Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{\left(\frac{1}{3}+\sqrt{3}\right)\left(1+\frac{1}{3}\sqrt{3}\right)}{\left(1-\frac{1}{3}\sqrt{3}\right)\left(1+\frac{1}{3}\sqrt{3}\right)}
Rationalize the denominator of \frac{\frac{1}{3}+\sqrt{3}}{1-\frac{1}{3}\sqrt{3}} by multiplying numerator and denominator by 1+\frac{1}{3}\sqrt{3}.
\frac{\left(\frac{1}{3}+\sqrt{3}\right)\left(1+\frac{1}{3}\sqrt{3}\right)}{1^{2}-\left(-\frac{1}{3}\sqrt{3}\right)^{2}}
Consider \left(1-\frac{1}{3}\sqrt{3}\right)\left(1+\frac{1}{3}\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\frac{1}{3}+\sqrt{3}\right)\left(1+\frac{1}{3}\sqrt{3}\right)}{1-\left(-\frac{1}{3}\sqrt{3}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{\left(\frac{1}{3}+\sqrt{3}\right)\left(1+\frac{1}{3}\sqrt{3}\right)}{1-\left(-\frac{1}{3}\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-\frac{1}{3}\sqrt{3}\right)^{2}.
\frac{\left(\frac{1}{3}+\sqrt{3}\right)\left(1+\frac{1}{3}\sqrt{3}\right)}{1-\frac{1}{9}\left(\sqrt{3}\right)^{2}}
Calculate -\frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{\left(\frac{1}{3}+\sqrt{3}\right)\left(1+\frac{1}{3}\sqrt{3}\right)}{1-\frac{1}{9}\times 3}
The square of \sqrt{3} is 3.
\frac{\left(\frac{1}{3}+\sqrt{3}\right)\left(1+\frac{1}{3}\sqrt{3}\right)}{1-\frac{3}{9}}
Multiply \frac{1}{9} and 3 to get \frac{3}{9}.
\frac{\left(\frac{1}{3}+\sqrt{3}\right)\left(1+\frac{1}{3}\sqrt{3}\right)}{1-\frac{1}{3}}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{\left(\frac{1}{3}+\sqrt{3}\right)\left(1+\frac{1}{3}\sqrt{3}\right)}{\frac{3}{3}-\frac{1}{3}}
Convert 1 to fraction \frac{3}{3}.
\frac{\left(\frac{1}{3}+\sqrt{3}\right)\left(1+\frac{1}{3}\sqrt{3}\right)}{\frac{3-1}{3}}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\frac{1}{3}+\sqrt{3}\right)\left(1+\frac{1}{3}\sqrt{3}\right)}{\frac{2}{3}}
Subtract 1 from 3 to get 2.
\frac{\left(\frac{1}{3}+\sqrt{3}\right)\left(1+\frac{1}{3}\sqrt{3}\right)\times 3}{2}
Divide \left(\frac{1}{3}+\sqrt{3}\right)\left(1+\frac{1}{3}\sqrt{3}\right) by \frac{2}{3} by multiplying \left(\frac{1}{3}+\sqrt{3}\right)\left(1+\frac{1}{3}\sqrt{3}\right) by the reciprocal of \frac{2}{3}.
\frac{\left(\frac{1}{3}+\frac{1}{3}\times \frac{1}{3}\sqrt{3}+\sqrt{3}+\sqrt{3}\times \frac{1}{3}\sqrt{3}\right)\times 3}{2}
Apply the distributive property by multiplying each term of \frac{1}{3}+\sqrt{3} by each term of 1+\frac{1}{3}\sqrt{3}.
\frac{\left(\frac{1}{3}+\frac{1}{3}\times \frac{1}{3}\sqrt{3}+\sqrt{3}+3\times \frac{1}{3}\right)\times 3}{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{\left(\frac{1}{3}+\frac{1\times 1}{3\times 3}\sqrt{3}+\sqrt{3}+3\times \frac{1}{3}\right)\times 3}{2}
Multiply \frac{1}{3} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\frac{1}{3}+\frac{1}{9}\sqrt{3}+\sqrt{3}+3\times \frac{1}{3}\right)\times 3}{2}
Do the multiplications in the fraction \frac{1\times 1}{3\times 3}.
\frac{\left(\frac{1}{3}+\frac{10}{9}\sqrt{3}+3\times \frac{1}{3}\right)\times 3}{2}
Combine \frac{1}{9}\sqrt{3} and \sqrt{3} to get \frac{10}{9}\sqrt{3}.
\frac{\left(\frac{1}{3}+\frac{10}{9}\sqrt{3}+1\right)\times 3}{2}
Cancel out 3 and 3.
\frac{\left(\frac{1}{3}+\frac{10}{9}\sqrt{3}+\frac{3}{3}\right)\times 3}{2}
Convert 1 to fraction \frac{3}{3}.
\frac{\left(\frac{1+3}{3}+\frac{10}{9}\sqrt{3}\right)\times 3}{2}
Since \frac{1}{3} and \frac{3}{3} have the same denominator, add them by adding their numerators.
\frac{\left(\frac{4}{3}+\frac{10}{9}\sqrt{3}\right)\times 3}{2}
Add 1 and 3 to get 4.
\frac{\frac{4}{3}\times 3+\frac{10}{9}\sqrt{3}\times 3}{2}
Use the distributive property to multiply \frac{4}{3}+\frac{10}{9}\sqrt{3} by 3.
\frac{4+\frac{10}{9}\sqrt{3}\times 3}{2}
Cancel out 3 and 3.
\frac{4+\frac{10\times 3}{9}\sqrt{3}}{2}
Express \frac{10}{9}\times 3 as a single fraction.
\frac{4+\frac{30}{9}\sqrt{3}}{2}
Multiply 10 and 3 to get 30.
\frac{4+\frac{10}{3}\sqrt{3}}{2}
Reduce the fraction \frac{30}{9} to lowest terms by extracting and canceling out 3.