Evaluate
-\frac{1}{3}\approx -0.333333333
Factor
-\frac{1}{3} = -0.3333333333333333
Share
Copied to clipboard
\frac{\frac{2}{4}-\frac{3}{4}+\frac{1}{8}}{\frac{1}{2}+\frac{3}{4}-\frac{7}{8}}
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{3}{4} to fractions with denominator 4.
\frac{\frac{2-3}{4}+\frac{1}{8}}{\frac{1}{2}+\frac{3}{4}-\frac{7}{8}}
Since \frac{2}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{1}{4}+\frac{1}{8}}{\frac{1}{2}+\frac{3}{4}-\frac{7}{8}}
Subtract 3 from 2 to get -1.
\frac{-\frac{2}{8}+\frac{1}{8}}{\frac{1}{2}+\frac{3}{4}-\frac{7}{8}}
Least common multiple of 4 and 8 is 8. Convert -\frac{1}{4} and \frac{1}{8} to fractions with denominator 8.
\frac{\frac{-2+1}{8}}{\frac{1}{2}+\frac{3}{4}-\frac{7}{8}}
Since -\frac{2}{8} and \frac{1}{8} have the same denominator, add them by adding their numerators.
\frac{-\frac{1}{8}}{\frac{1}{2}+\frac{3}{4}-\frac{7}{8}}
Add -2 and 1 to get -1.
\frac{-\frac{1}{8}}{\frac{2}{4}+\frac{3}{4}-\frac{7}{8}}
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{3}{4} to fractions with denominator 4.
\frac{-\frac{1}{8}}{\frac{2+3}{4}-\frac{7}{8}}
Since \frac{2}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
\frac{-\frac{1}{8}}{\frac{5}{4}-\frac{7}{8}}
Add 2 and 3 to get 5.
\frac{-\frac{1}{8}}{\frac{10}{8}-\frac{7}{8}}
Least common multiple of 4 and 8 is 8. Convert \frac{5}{4} and \frac{7}{8} to fractions with denominator 8.
\frac{-\frac{1}{8}}{\frac{10-7}{8}}
Since \frac{10}{8} and \frac{7}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{1}{8}}{\frac{3}{8}}
Subtract 7 from 10 to get 3.
-\frac{1}{8}\times \frac{8}{3}
Divide -\frac{1}{8} by \frac{3}{8} by multiplying -\frac{1}{8} by the reciprocal of \frac{3}{8}.
\frac{-8}{8\times 3}
Multiply -\frac{1}{8} times \frac{8}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{3}
Cancel out 8 in both numerator and denominator.
-\frac{1}{3}
Fraction \frac{-1}{3} can be rewritten as -\frac{1}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}