Evaluate
-\frac{5}{3}\approx -1.666666667
Factor
-\frac{5}{3} = -1\frac{2}{3} = -1.6666666666666667
Share
Copied to clipboard
\frac{\frac{1}{2}+\frac{4}{2}}{\frac{1}{2}-2}
Convert 2 to fraction \frac{4}{2}.
\frac{\frac{1+4}{2}}{\frac{1}{2}-2}
Since \frac{1}{2} and \frac{4}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{5}{2}}{\frac{1}{2}-2}
Add 1 and 4 to get 5.
\frac{\frac{5}{2}}{\frac{1}{2}-\frac{4}{2}}
Convert 2 to fraction \frac{4}{2}.
\frac{\frac{5}{2}}{\frac{1-4}{2}}
Since \frac{1}{2} and \frac{4}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5}{2}}{-\frac{3}{2}}
Subtract 4 from 1 to get -3.
\frac{5}{2}\left(-\frac{2}{3}\right)
Divide \frac{5}{2} by -\frac{3}{2} by multiplying \frac{5}{2} by the reciprocal of -\frac{3}{2}.
\frac{5\left(-2\right)}{2\times 3}
Multiply \frac{5}{2} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-10}{6}
Do the multiplications in the fraction \frac{5\left(-2\right)}{2\times 3}.
-\frac{5}{3}
Reduce the fraction \frac{-10}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}