Evaluate
\frac{\sqrt{3}}{3}\approx 0.577350269
Share
Copied to clipboard
\frac{\frac{1}{2}}{\sqrt{1-\frac{1}{4}}}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\frac{1}{2}}{\sqrt{\frac{4}{4}-\frac{1}{4}}}
Convert 1 to fraction \frac{4}{4}.
\frac{\frac{1}{2}}{\sqrt{\frac{4-1}{4}}}
Since \frac{4}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{2}}{\sqrt{\frac{3}{4}}}
Subtract 1 from 4 to get 3.
\frac{\frac{1}{2}}{\frac{\sqrt{3}}{\sqrt{4}}}
Rewrite the square root of the division \sqrt{\frac{3}{4}} as the division of square roots \frac{\sqrt{3}}{\sqrt{4}}.
\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}
Calculate the square root of 4 and get 2.
\frac{2}{2\sqrt{3}}
Divide \frac{1}{2} by \frac{\sqrt{3}}{2} by multiplying \frac{1}{2} by the reciprocal of \frac{\sqrt{3}}{2}.
\frac{2\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{2}{2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{2\sqrt{3}}{2\times 3}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}}{3}
Cancel out 2 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}