Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{\left(3^{1}+\sqrt{3}\right)\sqrt{3}}
Express \frac{\frac{1}{3^{1}+\sqrt{3}}}{\sqrt{3}} as a single fraction.
\frac{1}{\left(3+\sqrt{3}\right)\sqrt{3}}
Calculate 3 to the power of 1 and get 3.
\frac{\sqrt{3}}{\left(3+\sqrt{3}\right)\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{1}{\left(3+\sqrt{3}\right)\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{3}}{\left(3+\sqrt{3}\right)\times 3}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}}{9+3\sqrt{3}}
Use the distributive property to multiply 3+\sqrt{3} by 3.
\frac{\sqrt{3}\left(9-3\sqrt{3}\right)}{\left(9+3\sqrt{3}\right)\left(9-3\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{3}}{9+3\sqrt{3}} by multiplying numerator and denominator by 9-3\sqrt{3}.
\frac{\sqrt{3}\left(9-3\sqrt{3}\right)}{9^{2}-\left(3\sqrt{3}\right)^{2}}
Consider \left(9+3\sqrt{3}\right)\left(9-3\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(9-3\sqrt{3}\right)}{81-\left(3\sqrt{3}\right)^{2}}
Calculate 9 to the power of 2 and get 81.
\frac{\sqrt{3}\left(9-3\sqrt{3}\right)}{81-3^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(3\sqrt{3}\right)^{2}.
\frac{\sqrt{3}\left(9-3\sqrt{3}\right)}{81-9\left(\sqrt{3}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\sqrt{3}\left(9-3\sqrt{3}\right)}{81-9\times 3}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}\left(9-3\sqrt{3}\right)}{81-27}
Multiply 9 and 3 to get 27.
\frac{\sqrt{3}\left(9-3\sqrt{3}\right)}{54}
Subtract 27 from 81 to get 54.
\frac{9\sqrt{3}-3\left(\sqrt{3}\right)^{2}}{54}
Use the distributive property to multiply \sqrt{3} by 9-3\sqrt{3}.
\frac{9\sqrt{3}-3\times 3}{54}
The square of \sqrt{3} is 3.
\frac{9\sqrt{3}-9}{54}
Multiply -3 and 3 to get -9.