Evaluate
\frac{\sqrt{2}+\sqrt{6}-2\sqrt{3}-1}{5}\approx -0.120079662
Share
Copied to clipboard
\frac{\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-1}{\frac{1}{\sqrt{2}}+\sqrt{3}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{\sqrt{2}}{2}-1}{\frac{1}{\sqrt{2}}+\sqrt{3}}
The square of \sqrt{2} is 2.
\frac{\frac{\sqrt{2}}{2}-\frac{2}{2}}{\frac{1}{\sqrt{2}}+\sqrt{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{\frac{\sqrt{2}-2}{2}}{\frac{1}{\sqrt{2}}+\sqrt{3}}
Since \frac{\sqrt{2}}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\sqrt{2}-2}{2}}{\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\sqrt{3}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{\sqrt{2}-2}{2}}{\frac{\sqrt{2}}{2}+\sqrt{3}}
The square of \sqrt{2} is 2.
\frac{\frac{\sqrt{2}-2}{2}}{\frac{\sqrt{2}}{2}+\frac{2\sqrt{3}}{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{3} times \frac{2}{2}.
\frac{\frac{\sqrt{2}-2}{2}}{\frac{\sqrt{2}+2\sqrt{3}}{2}}
Since \frac{\sqrt{2}}{2} and \frac{2\sqrt{3}}{2} have the same denominator, add them by adding their numerators.
\frac{\left(\sqrt{2}-2\right)\times 2}{2\left(\sqrt{2}+2\sqrt{3}\right)}
Divide \frac{\sqrt{2}-2}{2} by \frac{\sqrt{2}+2\sqrt{3}}{2} by multiplying \frac{\sqrt{2}-2}{2} by the reciprocal of \frac{\sqrt{2}+2\sqrt{3}}{2}.
\frac{\sqrt{2}-2}{\sqrt{2}+2\sqrt{3}}
Cancel out 2 in both numerator and denominator.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{\left(\sqrt{2}+2\sqrt{3}\right)\left(\sqrt{2}-2\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{2}-2}{\sqrt{2}+2\sqrt{3}} by multiplying numerator and denominator by \sqrt{2}-2\sqrt{3}.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}
Consider \left(\sqrt{2}+2\sqrt{3}\right)\left(\sqrt{2}-2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-\left(2\sqrt{3}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-2^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-4\left(\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-4\times 3}
The square of \sqrt{3} is 3.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{2-12}
Multiply 4 and 3 to get 12.
\frac{\left(\sqrt{2}-2\right)\left(\sqrt{2}-2\sqrt{3}\right)}{-10}
Subtract 12 from 2 to get -10.
\frac{\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{3}-2\sqrt{2}+4\sqrt{3}}{-10}
Apply the distributive property by multiplying each term of \sqrt{2}-2 by each term of \sqrt{2}-2\sqrt{3}.
\frac{2-2\sqrt{2}\sqrt{3}-2\sqrt{2}+4\sqrt{3}}{-10}
The square of \sqrt{2} is 2.
\frac{2-2\sqrt{6}-2\sqrt{2}+4\sqrt{3}}{-10}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}