Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{0.425\times 50\pi ^{2}}{3\left(1-0.09\right)}}{\left(\frac{3}{24}\right)^{2}}
Cancel out 4 in both numerator and denominator.
\frac{\frac{21.25\pi ^{2}}{3\left(1-0.09\right)}}{\left(\frac{3}{24}\right)^{2}}
Multiply 0.425 and 50 to get 21.25.
\frac{\frac{21.25\pi ^{2}}{3\times 0.91}}{\left(\frac{3}{24}\right)^{2}}
Subtract 0.09 from 1 to get 0.91.
\frac{\frac{21.25\pi ^{2}}{2.73}}{\left(\frac{3}{24}\right)^{2}}
Multiply 3 and 0.91 to get 2.73.
\frac{\frac{2125}{273}\pi ^{2}}{\left(\frac{3}{24}\right)^{2}}
Divide 21.25\pi ^{2} by 2.73 to get \frac{2125}{273}\pi ^{2}.
\frac{\frac{2125}{273}\pi ^{2}}{\left(\frac{1}{8}\right)^{2}}
Reduce the fraction \frac{3}{24} to lowest terms by extracting and canceling out 3.
\frac{\frac{2125}{273}\pi ^{2}}{\frac{1}{64}}
Calculate \frac{1}{8} to the power of 2 and get \frac{1}{64}.
\frac{2125}{273}\pi ^{2}\times 64
Divide \frac{2125}{273}\pi ^{2} by \frac{1}{64} by multiplying \frac{2125}{273}\pi ^{2} by the reciprocal of \frac{1}{64}.
\frac{136000}{273}\pi ^{2}
Multiply \frac{2125}{273} and 64 to get \frac{136000}{273}.
\frac{\frac{0.425\times 50\pi ^{2}}{3\left(1-0.09\right)}}{\left(\frac{3}{24}\right)^{2}}
Cancel out 4 in both numerator and denominator.
\frac{\frac{21.25\pi ^{2}}{3\left(1-0.09\right)}}{\left(\frac{3}{24}\right)^{2}}
Multiply 0.425 and 50 to get 21.25.
\frac{\frac{21.25\pi ^{2}}{3\times 0.91}}{\left(\frac{3}{24}\right)^{2}}
Subtract 0.09 from 1 to get 0.91.
\frac{\frac{21.25\pi ^{2}}{2.73}}{\left(\frac{3}{24}\right)^{2}}
Multiply 3 and 0.91 to get 2.73.
\frac{\frac{2125}{273}\pi ^{2}}{\left(\frac{3}{24}\right)^{2}}
Divide 21.25\pi ^{2} by 2.73 to get \frac{2125}{273}\pi ^{2}.
\frac{\frac{2125}{273}\pi ^{2}}{\left(\frac{1}{8}\right)^{2}}
Reduce the fraction \frac{3}{24} to lowest terms by extracting and canceling out 3.
\frac{\frac{2125}{273}\pi ^{2}}{\frac{1}{64}}
Calculate \frac{1}{8} to the power of 2 and get \frac{1}{64}.
\frac{2125}{273}\pi ^{2}\times 64
Divide \frac{2125}{273}\pi ^{2} by \frac{1}{64} by multiplying \frac{2125}{273}\pi ^{2} by the reciprocal of \frac{1}{64}.
\frac{136000}{273}\pi ^{2}
Multiply \frac{2125}{273} and 64 to get \frac{136000}{273}.