Evaluate
\frac{136000\pi ^{2}}{273}\approx 4916.726002008
Expand
\frac{136000 \pi ^ {2}}{273} = 4916.726002007885
Share
Copied to clipboard
\frac{\frac{0.425\times 50\pi ^{2}}{3\left(1-0.09\right)}}{\left(\frac{3}{24}\right)^{2}}
Cancel out 4 in both numerator and denominator.
\frac{\frac{21.25\pi ^{2}}{3\left(1-0.09\right)}}{\left(\frac{3}{24}\right)^{2}}
Multiply 0.425 and 50 to get 21.25.
\frac{\frac{21.25\pi ^{2}}{3\times 0.91}}{\left(\frac{3}{24}\right)^{2}}
Subtract 0.09 from 1 to get 0.91.
\frac{\frac{21.25\pi ^{2}}{2.73}}{\left(\frac{3}{24}\right)^{2}}
Multiply 3 and 0.91 to get 2.73.
\frac{\frac{2125}{273}\pi ^{2}}{\left(\frac{3}{24}\right)^{2}}
Divide 21.25\pi ^{2} by 2.73 to get \frac{2125}{273}\pi ^{2}.
\frac{\frac{2125}{273}\pi ^{2}}{\left(\frac{1}{8}\right)^{2}}
Reduce the fraction \frac{3}{24} to lowest terms by extracting and canceling out 3.
\frac{\frac{2125}{273}\pi ^{2}}{\frac{1}{64}}
Calculate \frac{1}{8} to the power of 2 and get \frac{1}{64}.
\frac{2125}{273}\pi ^{2}\times 64
Divide \frac{2125}{273}\pi ^{2} by \frac{1}{64} by multiplying \frac{2125}{273}\pi ^{2} by the reciprocal of \frac{1}{64}.
\frac{136000}{273}\pi ^{2}
Multiply \frac{2125}{273} and 64 to get \frac{136000}{273}.
\frac{\frac{0.425\times 50\pi ^{2}}{3\left(1-0.09\right)}}{\left(\frac{3}{24}\right)^{2}}
Cancel out 4 in both numerator and denominator.
\frac{\frac{21.25\pi ^{2}}{3\left(1-0.09\right)}}{\left(\frac{3}{24}\right)^{2}}
Multiply 0.425 and 50 to get 21.25.
\frac{\frac{21.25\pi ^{2}}{3\times 0.91}}{\left(\frac{3}{24}\right)^{2}}
Subtract 0.09 from 1 to get 0.91.
\frac{\frac{21.25\pi ^{2}}{2.73}}{\left(\frac{3}{24}\right)^{2}}
Multiply 3 and 0.91 to get 2.73.
\frac{\frac{2125}{273}\pi ^{2}}{\left(\frac{3}{24}\right)^{2}}
Divide 21.25\pi ^{2} by 2.73 to get \frac{2125}{273}\pi ^{2}.
\frac{\frac{2125}{273}\pi ^{2}}{\left(\frac{1}{8}\right)^{2}}
Reduce the fraction \frac{3}{24} to lowest terms by extracting and canceling out 3.
\frac{\frac{2125}{273}\pi ^{2}}{\frac{1}{64}}
Calculate \frac{1}{8} to the power of 2 and get \frac{1}{64}.
\frac{2125}{273}\pi ^{2}\times 64
Divide \frac{2125}{273}\pi ^{2} by \frac{1}{64} by multiplying \frac{2125}{273}\pi ^{2} by the reciprocal of \frac{1}{64}.
\frac{136000}{273}\pi ^{2}
Multiply \frac{2125}{273} and 64 to get \frac{136000}{273}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}