Evaluate
x^{3}
Expand
x^{3}
Share
Copied to clipboard
\frac{\left(x^{-2}+y^{-2}\right)x^{-1}}{x^{-2}\left(x^{-2}y^{-2}+x^{-4}\right)}
Divide \frac{x^{-2}+y^{-2}}{x^{-2}} by \frac{x^{-2}y^{-2}+x^{-4}}{x^{-1}} by multiplying \frac{x^{-2}+y^{-2}}{x^{-2}} by the reciprocal of \frac{x^{-2}y^{-2}+x^{-4}}{x^{-1}}.
\frac{\left(x^{-2}+y^{-2}\right)x^{1}}{x^{-2}y^{-2}+x^{-4}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(x^{-2}+y^{-2}\right)x}{x^{-2}y^{-2}+x^{-4}}
Calculate x to the power of 1 and get x.
\frac{\left(y^{-2}x^{2}+1\right)x^{-2}x}{\left(x^{-2}y^{2}+1\right)x^{-2}y^{-2}}
Factor the expressions that are not already factored.
\frac{\left(y^{-2}x^{2}+1\right)x}{\left(x^{-2}y^{2}+1\right)y^{-2}}
Cancel out x^{-2} in both numerator and denominator.
\frac{x+y^{-2}x^{3}}{x^{-2}+y^{-2}}
Expand the expression.
\frac{y^{-2}x\left(x^{2}+y^{2}\right)}{\left(y^{-2}x^{2}+1\right)x^{-2}}
Factor the expressions that are not already factored.
\frac{y^{-2}\left(x^{2}+y^{2}\right)x^{3}}{y^{-2}x^{2}+1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{x^{3}+y^{-2}x^{5}}{1+\left(\frac{1}{y}x\right)^{2}}
Expand the expression.
\frac{x^{3}+y^{-2}x^{5}}{1+\left(\frac{x}{y}\right)^{2}}
Express \frac{1}{y}x as a single fraction.
\frac{x^{3}+y^{-2}x^{5}}{1+\frac{x^{2}}{y^{2}}}
To raise \frac{x}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{3}+y^{-2}x^{5}}{\frac{y^{2}}{y^{2}}+\frac{x^{2}}{y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y^{2}}{y^{2}}.
\frac{x^{3}+y^{-2}x^{5}}{\frac{y^{2}+x^{2}}{y^{2}}}
Since \frac{y^{2}}{y^{2}} and \frac{x^{2}}{y^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(x^{3}+y^{-2}x^{5}\right)y^{2}}{y^{2}+x^{2}}
Divide x^{3}+y^{-2}x^{5} by \frac{y^{2}+x^{2}}{y^{2}} by multiplying x^{3}+y^{-2}x^{5} by the reciprocal of \frac{y^{2}+x^{2}}{y^{2}}.
\frac{y^{-2}y^{2}\left(x^{2}+y^{2}\right)x^{3}}{x^{2}+y^{2}}
Factor the expressions that are not already factored.
y^{-2}y^{2}x^{3}
Cancel out x^{2}+y^{2} in both numerator and denominator.
x^{3}
Expand the expression.
\frac{\left(x^{-2}+y^{-2}\right)x^{-1}}{x^{-2}\left(x^{-2}y^{-2}+x^{-4}\right)}
Divide \frac{x^{-2}+y^{-2}}{x^{-2}} by \frac{x^{-2}y^{-2}+x^{-4}}{x^{-1}} by multiplying \frac{x^{-2}+y^{-2}}{x^{-2}} by the reciprocal of \frac{x^{-2}y^{-2}+x^{-4}}{x^{-1}}.
\frac{\left(x^{-2}+y^{-2}\right)x^{1}}{x^{-2}y^{-2}+x^{-4}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(x^{-2}+y^{-2}\right)x}{x^{-2}y^{-2}+x^{-4}}
Calculate x to the power of 1 and get x.
\frac{\left(y^{-2}x^{2}+1\right)x^{-2}x}{\left(x^{-2}y^{2}+1\right)x^{-2}y^{-2}}
Factor the expressions that are not already factored.
\frac{\left(y^{-2}x^{2}+1\right)x}{\left(x^{-2}y^{2}+1\right)y^{-2}}
Cancel out x^{-2} in both numerator and denominator.
\frac{x+y^{-2}x^{3}}{x^{-2}+y^{-2}}
Expand the expression.
\frac{y^{-2}x\left(x^{2}+y^{2}\right)}{\left(y^{-2}x^{2}+1\right)x^{-2}}
Factor the expressions that are not already factored.
\frac{y^{-2}\left(x^{2}+y^{2}\right)x^{3}}{y^{-2}x^{2}+1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{x^{3}+y^{-2}x^{5}}{1+\left(\frac{1}{y}x\right)^{2}}
Expand the expression.
\frac{x^{3}+y^{-2}x^{5}}{1+\left(\frac{x}{y}\right)^{2}}
Express \frac{1}{y}x as a single fraction.
\frac{x^{3}+y^{-2}x^{5}}{1+\frac{x^{2}}{y^{2}}}
To raise \frac{x}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{3}+y^{-2}x^{5}}{\frac{y^{2}}{y^{2}}+\frac{x^{2}}{y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y^{2}}{y^{2}}.
\frac{x^{3}+y^{-2}x^{5}}{\frac{y^{2}+x^{2}}{y^{2}}}
Since \frac{y^{2}}{y^{2}} and \frac{x^{2}}{y^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(x^{3}+y^{-2}x^{5}\right)y^{2}}{y^{2}+x^{2}}
Divide x^{3}+y^{-2}x^{5} by \frac{y^{2}+x^{2}}{y^{2}} by multiplying x^{3}+y^{-2}x^{5} by the reciprocal of \frac{y^{2}+x^{2}}{y^{2}}.
\frac{y^{-2}y^{2}\left(x^{2}+y^{2}\right)x^{3}}{x^{2}+y^{2}}
Factor the expressions that are not already factored.
y^{-2}y^{2}x^{3}
Cancel out x^{2}+y^{2} in both numerator and denominator.
x^{3}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}