Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{\frac{\left(a^{2}-a\right)\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{\left(a^{2}+a\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}}{\frac{1}{a+1}-\frac{1}{a-1}+\frac{2a}{1-a^{2}}}+\frac{2a+1-a^{2}}{a+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and a-1 is \left(a-1\right)\left(a+1\right). Multiply \frac{a^{2}-a}{a+1} times \frac{a-1}{a-1}. Multiply \frac{a^{2}+a}{a-1} times \frac{a+1}{a+1}.
\frac{\frac{\left(a^{2}-a\right)\left(a-1\right)-\left(a^{2}+a\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}}{\frac{1}{a+1}-\frac{1}{a-1}+\frac{2a}{1-a^{2}}}+\frac{2a+1-a^{2}}{a+1}
Since \frac{\left(a^{2}-a\right)\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} and \frac{\left(a^{2}+a\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{3}-a^{2}-a^{2}+a-a^{3}-a^{2}-a^{2}-a}{\left(a-1\right)\left(a+1\right)}}{\frac{1}{a+1}-\frac{1}{a-1}+\frac{2a}{1-a^{2}}}+\frac{2a+1-a^{2}}{a+1}
Do the multiplications in \left(a^{2}-a\right)\left(a-1\right)-\left(a^{2}+a\right)\left(a+1\right).
\frac{\frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)}}{\frac{1}{a+1}-\frac{1}{a-1}+\frac{2a}{1-a^{2}}}+\frac{2a+1-a^{2}}{a+1}
Combine like terms in a^{3}-a^{2}-a^{2}+a-a^{3}-a^{2}-a^{2}-a.
\frac{\frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)}}{\frac{a-1}{\left(a-1\right)\left(a+1\right)}-\frac{a+1}{\left(a-1\right)\left(a+1\right)}+\frac{2a}{1-a^{2}}}+\frac{2a+1-a^{2}}{a+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and a-1 is \left(a-1\right)\left(a+1\right). Multiply \frac{1}{a+1} times \frac{a-1}{a-1}. Multiply \frac{1}{a-1} times \frac{a+1}{a+1}.
\frac{\frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)}}{\frac{a-1-\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{2a}{1-a^{2}}}+\frac{2a+1-a^{2}}{a+1}
Since \frac{a-1}{\left(a-1\right)\left(a+1\right)} and \frac{a+1}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)}}{\frac{a-1-a-1}{\left(a-1\right)\left(a+1\right)}+\frac{2a}{1-a^{2}}}+\frac{2a+1-a^{2}}{a+1}
Do the multiplications in a-1-\left(a+1\right).
\frac{\frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)}}{\frac{-2}{\left(a-1\right)\left(a+1\right)}+\frac{2a}{1-a^{2}}}+\frac{2a+1-a^{2}}{a+1}
Combine like terms in a-1-a-1.
\frac{\frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)}}{\frac{-2}{\left(a-1\right)\left(a+1\right)}+\frac{2a}{\left(a-1\right)\left(-a-1\right)}}+\frac{2a+1-a^{2}}{a+1}
Factor 1-a^{2}.
\frac{\frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)}}{\frac{-2}{\left(a-1\right)\left(a+1\right)}+\frac{-2a}{\left(a-1\right)\left(a+1\right)}}+\frac{2a+1-a^{2}}{a+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a+1\right) and \left(a-1\right)\left(-a-1\right) is \left(a-1\right)\left(a+1\right). Multiply \frac{2a}{\left(a-1\right)\left(-a-1\right)} times \frac{-1}{-1}.
\frac{\frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)}}{\frac{-2-2a}{\left(a-1\right)\left(a+1\right)}}+\frac{2a+1-a^{2}}{a+1}
Since \frac{-2}{\left(a-1\right)\left(a+1\right)} and \frac{-2a}{\left(a-1\right)\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)}}{\frac{2\left(-a-1\right)}{\left(a-1\right)\left(a+1\right)}}+\frac{2a+1-a^{2}}{a+1}
Factor the expressions that are not already factored in \frac{-2-2a}{\left(a-1\right)\left(a+1\right)}.
\frac{\frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)}}{\frac{-2\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}}+\frac{2a+1-a^{2}}{a+1}
Extract the negative sign in -1-a.
\frac{\frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)}}{\frac{-2}{a-1}}+\frac{2a+1-a^{2}}{a+1}
Cancel out a+1 in both numerator and denominator.
\frac{-4a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)\left(-1\right)\times 2}+\frac{2a+1-a^{2}}{a+1}
Divide \frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)} by \frac{-2}{a-1} by multiplying \frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)} by the reciprocal of \frac{-2}{a-1}.
\frac{-2a^{2}}{-\left(a+1\right)}+\frac{2a+1-a^{2}}{a+1}
Cancel out 2\left(a-1\right) in both numerator and denominator.
\frac{2a^{2}}{a+1}+\frac{2a+1-a^{2}}{a+1}
Cancel out -1 in both numerator and denominator.
\frac{2a^{2}+2a+1-a^{2}}{a+1}
Since \frac{2a^{2}}{a+1} and \frac{2a+1-a^{2}}{a+1} have the same denominator, add them by adding their numerators.
\frac{a^{2}+2a+1}{a+1}
Combine like terms in 2a^{2}+2a+1-a^{2}.
\frac{\left(a+1\right)^{2}}{a+1}
Factor the expressions that are not already factored in \frac{a^{2}+2a+1}{a+1}.
a+1
Cancel out a+1 in both numerator and denominator.
\frac{\frac{\left(a^{2}-a\right)\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{\left(a^{2}+a\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}}{\frac{1}{a+1}-\frac{1}{a-1}+\frac{2a}{1-a^{2}}}+\frac{2a+1-a^{2}}{a+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and a-1 is \left(a-1\right)\left(a+1\right). Multiply \frac{a^{2}-a}{a+1} times \frac{a-1}{a-1}. Multiply \frac{a^{2}+a}{a-1} times \frac{a+1}{a+1}.
\frac{\frac{\left(a^{2}-a\right)\left(a-1\right)-\left(a^{2}+a\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}}{\frac{1}{a+1}-\frac{1}{a-1}+\frac{2a}{1-a^{2}}}+\frac{2a+1-a^{2}}{a+1}
Since \frac{\left(a^{2}-a\right)\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} and \frac{\left(a^{2}+a\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{3}-a^{2}-a^{2}+a-a^{3}-a^{2}-a^{2}-a}{\left(a-1\right)\left(a+1\right)}}{\frac{1}{a+1}-\frac{1}{a-1}+\frac{2a}{1-a^{2}}}+\frac{2a+1-a^{2}}{a+1}
Do the multiplications in \left(a^{2}-a\right)\left(a-1\right)-\left(a^{2}+a\right)\left(a+1\right).
\frac{\frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)}}{\frac{1}{a+1}-\frac{1}{a-1}+\frac{2a}{1-a^{2}}}+\frac{2a+1-a^{2}}{a+1}
Combine like terms in a^{3}-a^{2}-a^{2}+a-a^{3}-a^{2}-a^{2}-a.
\frac{\frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)}}{\frac{a-1}{\left(a-1\right)\left(a+1\right)}-\frac{a+1}{\left(a-1\right)\left(a+1\right)}+\frac{2a}{1-a^{2}}}+\frac{2a+1-a^{2}}{a+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and a-1 is \left(a-1\right)\left(a+1\right). Multiply \frac{1}{a+1} times \frac{a-1}{a-1}. Multiply \frac{1}{a-1} times \frac{a+1}{a+1}.
\frac{\frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)}}{\frac{a-1-\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{2a}{1-a^{2}}}+\frac{2a+1-a^{2}}{a+1}
Since \frac{a-1}{\left(a-1\right)\left(a+1\right)} and \frac{a+1}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)}}{\frac{a-1-a-1}{\left(a-1\right)\left(a+1\right)}+\frac{2a}{1-a^{2}}}+\frac{2a+1-a^{2}}{a+1}
Do the multiplications in a-1-\left(a+1\right).
\frac{\frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)}}{\frac{-2}{\left(a-1\right)\left(a+1\right)}+\frac{2a}{1-a^{2}}}+\frac{2a+1-a^{2}}{a+1}
Combine like terms in a-1-a-1.
\frac{\frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)}}{\frac{-2}{\left(a-1\right)\left(a+1\right)}+\frac{2a}{\left(a-1\right)\left(-a-1\right)}}+\frac{2a+1-a^{2}}{a+1}
Factor 1-a^{2}.
\frac{\frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)}}{\frac{-2}{\left(a-1\right)\left(a+1\right)}+\frac{-2a}{\left(a-1\right)\left(a+1\right)}}+\frac{2a+1-a^{2}}{a+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a+1\right) and \left(a-1\right)\left(-a-1\right) is \left(a-1\right)\left(a+1\right). Multiply \frac{2a}{\left(a-1\right)\left(-a-1\right)} times \frac{-1}{-1}.
\frac{\frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)}}{\frac{-2-2a}{\left(a-1\right)\left(a+1\right)}}+\frac{2a+1-a^{2}}{a+1}
Since \frac{-2}{\left(a-1\right)\left(a+1\right)} and \frac{-2a}{\left(a-1\right)\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)}}{\frac{2\left(-a-1\right)}{\left(a-1\right)\left(a+1\right)}}+\frac{2a+1-a^{2}}{a+1}
Factor the expressions that are not already factored in \frac{-2-2a}{\left(a-1\right)\left(a+1\right)}.
\frac{\frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)}}{\frac{-2\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}}+\frac{2a+1-a^{2}}{a+1}
Extract the negative sign in -1-a.
\frac{\frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)}}{\frac{-2}{a-1}}+\frac{2a+1-a^{2}}{a+1}
Cancel out a+1 in both numerator and denominator.
\frac{-4a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)\left(-1\right)\times 2}+\frac{2a+1-a^{2}}{a+1}
Divide \frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)} by \frac{-2}{a-1} by multiplying \frac{-4a^{2}}{\left(a-1\right)\left(a+1\right)} by the reciprocal of \frac{-2}{a-1}.
\frac{-2a^{2}}{-\left(a+1\right)}+\frac{2a+1-a^{2}}{a+1}
Cancel out 2\left(a-1\right) in both numerator and denominator.
\frac{2a^{2}}{a+1}+\frac{2a+1-a^{2}}{a+1}
Cancel out -1 in both numerator and denominator.
\frac{2a^{2}+2a+1-a^{2}}{a+1}
Since \frac{2a^{2}}{a+1} and \frac{2a+1-a^{2}}{a+1} have the same denominator, add them by adding their numerators.
\frac{a^{2}+2a+1}{a+1}
Combine like terms in 2a^{2}+2a+1-a^{2}.
\frac{\left(a+1\right)^{2}}{a+1}
Factor the expressions that are not already factored in \frac{a^{2}+2a+1}{a+1}.
a+1
Cancel out a+1 in both numerator and denominator.