Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a^{2}-b^{2}\right)\left(a+b\right)}{\left(a^{2}+2ab\right)\left(2a^{1}-2b\right)}
Divide \frac{a^{2}-b^{2}}{a^{2}+2ab} by \frac{2a^{1}-2b}{a+b} by multiplying \frac{a^{2}-b^{2}}{a^{2}+2ab} by the reciprocal of \frac{2a^{1}-2b}{a+b}.
\frac{\left(a^{2}-b^{2}\right)\left(a+b\right)}{\left(a^{2}+2ab\right)\left(2a-2b\right)}
Calculate a to the power of 1 and get a.
\frac{\left(a-b\right)\left(a+b\right)^{2}}{2a\left(a-b\right)\left(a+2b\right)}
Factor the expressions that are not already factored.
\frac{\left(a+b\right)^{2}}{2a\left(a+2b\right)}
Cancel out a-b in both numerator and denominator.
\frac{a^{2}+2ab+b^{2}}{2a^{2}+4ab}
Expand the expression.
\frac{\left(a^{2}-b^{2}\right)\left(a+b\right)}{\left(a^{2}+2ab\right)\left(2a^{1}-2b\right)}
Divide \frac{a^{2}-b^{2}}{a^{2}+2ab} by \frac{2a^{1}-2b}{a+b} by multiplying \frac{a^{2}-b^{2}}{a^{2}+2ab} by the reciprocal of \frac{2a^{1}-2b}{a+b}.
\frac{\left(a^{2}-b^{2}\right)\left(a+b\right)}{\left(a^{2}+2ab\right)\left(2a-2b\right)}
Calculate a to the power of 1 and get a.
\frac{\left(a-b\right)\left(a+b\right)^{2}}{2a\left(a-b\right)\left(a+2b\right)}
Factor the expressions that are not already factored.
\frac{\left(a+b\right)^{2}}{2a\left(a+2b\right)}
Cancel out a-b in both numerator and denominator.
\frac{a^{2}+2ab+b^{2}}{2a^{2}+4ab}
Expand the expression.