Evaluate
a^{2}-b^{2}
Expand
a^{2}-b^{2}
Share
Copied to clipboard
\frac{\frac{a^{2}a^{2}}{a^{2}b^{2}}-\frac{b^{2}b^{2}}{a^{2}b^{2}}}{\frac{1}{b^{2}}+\frac{1}{a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b^{2} and a^{2} is a^{2}b^{2}. Multiply \frac{a^{2}}{b^{2}} times \frac{a^{2}}{a^{2}}. Multiply \frac{b^{2}}{a^{2}} times \frac{b^{2}}{b^{2}}.
\frac{\frac{a^{2}a^{2}-b^{2}b^{2}}{a^{2}b^{2}}}{\frac{1}{b^{2}}+\frac{1}{a^{2}}}
Since \frac{a^{2}a^{2}}{a^{2}b^{2}} and \frac{b^{2}b^{2}}{a^{2}b^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{4}-b^{4}}{a^{2}b^{2}}}{\frac{1}{b^{2}}+\frac{1}{a^{2}}}
Do the multiplications in a^{2}a^{2}-b^{2}b^{2}.
\frac{\frac{a^{4}-b^{4}}{a^{2}b^{2}}}{\frac{a^{2}}{a^{2}b^{2}}+\frac{b^{2}}{a^{2}b^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b^{2} and a^{2} is a^{2}b^{2}. Multiply \frac{1}{b^{2}} times \frac{a^{2}}{a^{2}}. Multiply \frac{1}{a^{2}} times \frac{b^{2}}{b^{2}}.
\frac{\frac{a^{4}-b^{4}}{a^{2}b^{2}}}{\frac{a^{2}+b^{2}}{a^{2}b^{2}}}
Since \frac{a^{2}}{a^{2}b^{2}} and \frac{b^{2}}{a^{2}b^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(a^{4}-b^{4}\right)a^{2}b^{2}}{a^{2}b^{2}\left(a^{2}+b^{2}\right)}
Divide \frac{a^{4}-b^{4}}{a^{2}b^{2}} by \frac{a^{2}+b^{2}}{a^{2}b^{2}} by multiplying \frac{a^{4}-b^{4}}{a^{2}b^{2}} by the reciprocal of \frac{a^{2}+b^{2}}{a^{2}b^{2}}.
\frac{a^{4}-b^{4}}{a^{2}+b^{2}}
Cancel out a^{2}b^{2} in both numerator and denominator.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{a^{2}+b^{2}}
Factor the expressions that are not already factored.
\left(a+b\right)\left(a-b\right)
Cancel out a^{2}+b^{2} in both numerator and denominator.
a^{2}-b^{2}
Expand the expression.
\frac{\frac{a^{2}a^{2}}{a^{2}b^{2}}-\frac{b^{2}b^{2}}{a^{2}b^{2}}}{\frac{1}{b^{2}}+\frac{1}{a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b^{2} and a^{2} is a^{2}b^{2}. Multiply \frac{a^{2}}{b^{2}} times \frac{a^{2}}{a^{2}}. Multiply \frac{b^{2}}{a^{2}} times \frac{b^{2}}{b^{2}}.
\frac{\frac{a^{2}a^{2}-b^{2}b^{2}}{a^{2}b^{2}}}{\frac{1}{b^{2}}+\frac{1}{a^{2}}}
Since \frac{a^{2}a^{2}}{a^{2}b^{2}} and \frac{b^{2}b^{2}}{a^{2}b^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{4}-b^{4}}{a^{2}b^{2}}}{\frac{1}{b^{2}}+\frac{1}{a^{2}}}
Do the multiplications in a^{2}a^{2}-b^{2}b^{2}.
\frac{\frac{a^{4}-b^{4}}{a^{2}b^{2}}}{\frac{a^{2}}{a^{2}b^{2}}+\frac{b^{2}}{a^{2}b^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b^{2} and a^{2} is a^{2}b^{2}. Multiply \frac{1}{b^{2}} times \frac{a^{2}}{a^{2}}. Multiply \frac{1}{a^{2}} times \frac{b^{2}}{b^{2}}.
\frac{\frac{a^{4}-b^{4}}{a^{2}b^{2}}}{\frac{a^{2}+b^{2}}{a^{2}b^{2}}}
Since \frac{a^{2}}{a^{2}b^{2}} and \frac{b^{2}}{a^{2}b^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(a^{4}-b^{4}\right)a^{2}b^{2}}{a^{2}b^{2}\left(a^{2}+b^{2}\right)}
Divide \frac{a^{4}-b^{4}}{a^{2}b^{2}} by \frac{a^{2}+b^{2}}{a^{2}b^{2}} by multiplying \frac{a^{4}-b^{4}}{a^{2}b^{2}} by the reciprocal of \frac{a^{2}+b^{2}}{a^{2}b^{2}}.
\frac{a^{4}-b^{4}}{a^{2}+b^{2}}
Cancel out a^{2}b^{2} in both numerator and denominator.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{a^{2}+b^{2}}
Factor the expressions that are not already factored.
\left(a+b\right)\left(a-b\right)
Cancel out a^{2}+b^{2} in both numerator and denominator.
a^{2}-b^{2}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}