Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{a^{2}a^{2}}{a^{2}b^{2}}-\frac{b^{2}b^{2}}{a^{2}b^{2}}}{\frac{1}{b^{2}}+\frac{1}{a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b^{2} and a^{2} is a^{2}b^{2}. Multiply \frac{a^{2}}{b^{2}} times \frac{a^{2}}{a^{2}}. Multiply \frac{b^{2}}{a^{2}} times \frac{b^{2}}{b^{2}}.
\frac{\frac{a^{2}a^{2}-b^{2}b^{2}}{a^{2}b^{2}}}{\frac{1}{b^{2}}+\frac{1}{a^{2}}}
Since \frac{a^{2}a^{2}}{a^{2}b^{2}} and \frac{b^{2}b^{2}}{a^{2}b^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{4}-b^{4}}{a^{2}b^{2}}}{\frac{1}{b^{2}}+\frac{1}{a^{2}}}
Do the multiplications in a^{2}a^{2}-b^{2}b^{2}.
\frac{\frac{a^{4}-b^{4}}{a^{2}b^{2}}}{\frac{a^{2}}{a^{2}b^{2}}+\frac{b^{2}}{a^{2}b^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b^{2} and a^{2} is a^{2}b^{2}. Multiply \frac{1}{b^{2}} times \frac{a^{2}}{a^{2}}. Multiply \frac{1}{a^{2}} times \frac{b^{2}}{b^{2}}.
\frac{\frac{a^{4}-b^{4}}{a^{2}b^{2}}}{\frac{a^{2}+b^{2}}{a^{2}b^{2}}}
Since \frac{a^{2}}{a^{2}b^{2}} and \frac{b^{2}}{a^{2}b^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(a^{4}-b^{4}\right)a^{2}b^{2}}{a^{2}b^{2}\left(a^{2}+b^{2}\right)}
Divide \frac{a^{4}-b^{4}}{a^{2}b^{2}} by \frac{a^{2}+b^{2}}{a^{2}b^{2}} by multiplying \frac{a^{4}-b^{4}}{a^{2}b^{2}} by the reciprocal of \frac{a^{2}+b^{2}}{a^{2}b^{2}}.
\frac{a^{4}-b^{4}}{a^{2}+b^{2}}
Cancel out a^{2}b^{2} in both numerator and denominator.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{a^{2}+b^{2}}
Factor the expressions that are not already factored.
\left(a+b\right)\left(a-b\right)
Cancel out a^{2}+b^{2} in both numerator and denominator.
a^{2}-b^{2}
Expand the expression.
\frac{\frac{a^{2}a^{2}}{a^{2}b^{2}}-\frac{b^{2}b^{2}}{a^{2}b^{2}}}{\frac{1}{b^{2}}+\frac{1}{a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b^{2} and a^{2} is a^{2}b^{2}. Multiply \frac{a^{2}}{b^{2}} times \frac{a^{2}}{a^{2}}. Multiply \frac{b^{2}}{a^{2}} times \frac{b^{2}}{b^{2}}.
\frac{\frac{a^{2}a^{2}-b^{2}b^{2}}{a^{2}b^{2}}}{\frac{1}{b^{2}}+\frac{1}{a^{2}}}
Since \frac{a^{2}a^{2}}{a^{2}b^{2}} and \frac{b^{2}b^{2}}{a^{2}b^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{4}-b^{4}}{a^{2}b^{2}}}{\frac{1}{b^{2}}+\frac{1}{a^{2}}}
Do the multiplications in a^{2}a^{2}-b^{2}b^{2}.
\frac{\frac{a^{4}-b^{4}}{a^{2}b^{2}}}{\frac{a^{2}}{a^{2}b^{2}}+\frac{b^{2}}{a^{2}b^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b^{2} and a^{2} is a^{2}b^{2}. Multiply \frac{1}{b^{2}} times \frac{a^{2}}{a^{2}}. Multiply \frac{1}{a^{2}} times \frac{b^{2}}{b^{2}}.
\frac{\frac{a^{4}-b^{4}}{a^{2}b^{2}}}{\frac{a^{2}+b^{2}}{a^{2}b^{2}}}
Since \frac{a^{2}}{a^{2}b^{2}} and \frac{b^{2}}{a^{2}b^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(a^{4}-b^{4}\right)a^{2}b^{2}}{a^{2}b^{2}\left(a^{2}+b^{2}\right)}
Divide \frac{a^{4}-b^{4}}{a^{2}b^{2}} by \frac{a^{2}+b^{2}}{a^{2}b^{2}} by multiplying \frac{a^{4}-b^{4}}{a^{2}b^{2}} by the reciprocal of \frac{a^{2}+b^{2}}{a^{2}b^{2}}.
\frac{a^{4}-b^{4}}{a^{2}+b^{2}}
Cancel out a^{2}b^{2} in both numerator and denominator.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{a^{2}+b^{2}}
Factor the expressions that are not already factored.
\left(a+b\right)\left(a-b\right)
Cancel out a^{2}+b^{2} in both numerator and denominator.
a^{2}-b^{2}
Expand the expression.