Evaluate
-\frac{704}{1875}\approx -0.375466667
Factor
-\frac{704}{1875} = -0.37546666666666667
Share
Copied to clipboard
\frac{\frac{\left(\frac{1}{2}-\frac{2}{3}\right)^{2}\times 6}{\frac{5}{6}\times 5}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Divide \frac{\left(\frac{1}{2}-\frac{2}{3}\right)^{2}}{\frac{5}{6}} by \frac{5}{6} by multiplying \frac{\left(\frac{1}{2}-\frac{2}{3}\right)^{2}}{\frac{5}{6}} by the reciprocal of \frac{5}{6}.
\frac{\frac{\left(-\frac{1}{6}\right)^{2}\times 6}{\frac{5}{6}\times 5}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Subtract \frac{2}{3} from \frac{1}{2} to get -\frac{1}{6}.
\frac{\frac{\frac{1}{36}\times 6}{\frac{5}{6}\times 5}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Calculate -\frac{1}{6} to the power of 2 and get \frac{1}{36}.
\frac{\frac{\frac{1}{6}}{\frac{5}{6}\times 5}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Multiply \frac{1}{36} and 6 to get \frac{1}{6}.
\frac{\frac{\frac{1}{6}}{\frac{25}{6}}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Multiply \frac{5}{6} and 5 to get \frac{25}{6}.
\frac{\frac{1}{6}\times \frac{6}{25}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Divide \frac{1}{6} by \frac{25}{6} by multiplying \frac{1}{6} by the reciprocal of \frac{25}{6}.
\frac{\frac{1}{25}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Multiply \frac{1}{6} and \frac{6}{25} to get \frac{1}{25}.
\frac{\frac{1}{25}-\frac{1}{3}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Rewrite the square root of the division \frac{1}{9} as the division of square roots \frac{\sqrt{1}}{\sqrt{9}}. Take the square root of both numerator and denominator.
\frac{-\frac{22}{75}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Subtract \frac{1}{3} from \frac{1}{25} to get -\frac{22}{75}.
\frac{-\frac{22}{75}}{\frac{1}{2}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Calculate \sqrt[3]{\frac{1}{8}} and get \frac{1}{2}.
\frac{-\frac{22}{75}}{\frac{1}{2}+\left(\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Subtract \frac{1}{2} from 1 to get \frac{1}{2}.
\frac{-\frac{22}{75}}{\frac{1}{2}+\frac{1}{4}\times \frac{9}{8}}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{-\frac{22}{75}}{\frac{1}{2}+\frac{9}{32}}
Multiply \frac{1}{4} and \frac{9}{8} to get \frac{9}{32}.
\frac{-\frac{22}{75}}{\frac{25}{32}}
Add \frac{1}{2} and \frac{9}{32} to get \frac{25}{32}.
-\frac{22}{75}\times \frac{32}{25}
Divide -\frac{22}{75} by \frac{25}{32} by multiplying -\frac{22}{75} by the reciprocal of \frac{25}{32}.
-\frac{704}{1875}
Multiply -\frac{22}{75} and \frac{32}{25} to get -\frac{704}{1875}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}