Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{\frac{\left(\frac{1}{2}-\frac{2}{3}\right)^{2}\times 6}{\frac{5}{6}\times 5}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Divide \frac{\left(\frac{1}{2}-\frac{2}{3}\right)^{2}}{\frac{5}{6}} by \frac{5}{6} by multiplying \frac{\left(\frac{1}{2}-\frac{2}{3}\right)^{2}}{\frac{5}{6}} by the reciprocal of \frac{5}{6}.
\frac{\frac{\left(-\frac{1}{6}\right)^{2}\times 6}{\frac{5}{6}\times 5}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Subtract \frac{2}{3} from \frac{1}{2} to get -\frac{1}{6}.
\frac{\frac{\frac{1}{36}\times 6}{\frac{5}{6}\times 5}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Calculate -\frac{1}{6} to the power of 2 and get \frac{1}{36}.
\frac{\frac{\frac{1}{6}}{\frac{5}{6}\times 5}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Multiply \frac{1}{36} and 6 to get \frac{1}{6}.
\frac{\frac{\frac{1}{6}}{\frac{25}{6}}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Multiply \frac{5}{6} and 5 to get \frac{25}{6}.
\frac{\frac{1}{6}\times \frac{6}{25}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Divide \frac{1}{6} by \frac{25}{6} by multiplying \frac{1}{6} by the reciprocal of \frac{25}{6}.
\frac{\frac{1}{25}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Multiply \frac{1}{6} and \frac{6}{25} to get \frac{1}{25}.
\frac{\frac{1}{25}-\frac{1}{3}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Rewrite the square root of the division \frac{1}{9} as the division of square roots \frac{\sqrt{1}}{\sqrt{9}}. Take the square root of both numerator and denominator.
\frac{-\frac{22}{75}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Subtract \frac{1}{3} from \frac{1}{25} to get -\frac{22}{75}.
\frac{-\frac{22}{75}}{\frac{1}{2}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Calculate \sqrt[3]{\frac{1}{8}} and get \frac{1}{2}.
\frac{-\frac{22}{75}}{\frac{1}{2}+\left(\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Subtract \frac{1}{2} from 1 to get \frac{1}{2}.
\frac{-\frac{22}{75}}{\frac{1}{2}+\frac{1}{4}\times \frac{9}{8}}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{-\frac{22}{75}}{\frac{1}{2}+\frac{9}{32}}
Multiply \frac{1}{4} and \frac{9}{8} to get \frac{9}{32}.
\frac{-\frac{22}{75}}{\frac{25}{32}}
Add \frac{1}{2} and \frac{9}{32} to get \frac{25}{32}.
-\frac{22}{75}\times \frac{32}{25}
Divide -\frac{22}{75} by \frac{25}{32} by multiplying -\frac{22}{75} by the reciprocal of \frac{25}{32}.
-\frac{704}{1875}
Multiply -\frac{22}{75} and \frac{32}{25} to get -\frac{704}{1875}.