Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\sqrt{3}}{2}-\frac{154}{94864}}{\frac{\sqrt{3}}{2}+\frac{154}{308^{2}}}
Calculate 308 to the power of 2 and get 94864.
\frac{\frac{\sqrt{3}}{2}-\frac{1}{616}}{\frac{\sqrt{3}}{2}+\frac{154}{308^{2}}}
Reduce the fraction \frac{154}{94864} to lowest terms by extracting and canceling out 154.
\frac{\frac{308\sqrt{3}}{616}-\frac{1}{616}}{\frac{\sqrt{3}}{2}+\frac{154}{308^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 616 is 616. Multiply \frac{\sqrt{3}}{2} times \frac{308}{308}.
\frac{\frac{308\sqrt{3}-1}{616}}{\frac{\sqrt{3}}{2}+\frac{154}{308^{2}}}
Since \frac{308\sqrt{3}}{616} and \frac{1}{616} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{308\sqrt{3}-1}{616}}{\frac{\sqrt{3}}{2}+\frac{154}{94864}}
Calculate 308 to the power of 2 and get 94864.
\frac{\frac{308\sqrt{3}-1}{616}}{\frac{\sqrt{3}}{2}+\frac{1}{616}}
Reduce the fraction \frac{154}{94864} to lowest terms by extracting and canceling out 154.
\frac{\frac{308\sqrt{3}-1}{616}}{\frac{308\sqrt{3}}{616}+\frac{1}{616}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 616 is 616. Multiply \frac{\sqrt{3}}{2} times \frac{308}{308}.
\frac{\frac{308\sqrt{3}-1}{616}}{\frac{308\sqrt{3}+1}{616}}
Since \frac{308\sqrt{3}}{616} and \frac{1}{616} have the same denominator, add them by adding their numerators.
\frac{\left(308\sqrt{3}-1\right)\times 616}{616\left(308\sqrt{3}+1\right)}
Divide \frac{308\sqrt{3}-1}{616} by \frac{308\sqrt{3}+1}{616} by multiplying \frac{308\sqrt{3}-1}{616} by the reciprocal of \frac{308\sqrt{3}+1}{616}.
\frac{308\sqrt{3}-1}{308\sqrt{3}+1}
Cancel out 616 in both numerator and denominator.
\frac{\left(308\sqrt{3}-1\right)\left(308\sqrt{3}-1\right)}{\left(308\sqrt{3}+1\right)\left(308\sqrt{3}-1\right)}
Rationalize the denominator of \frac{308\sqrt{3}-1}{308\sqrt{3}+1} by multiplying numerator and denominator by 308\sqrt{3}-1.
\frac{\left(308\sqrt{3}-1\right)\left(308\sqrt{3}-1\right)}{\left(308\sqrt{3}\right)^{2}-1^{2}}
Consider \left(308\sqrt{3}+1\right)\left(308\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(308\sqrt{3}-1\right)^{2}}{\left(308\sqrt{3}\right)^{2}-1^{2}}
Multiply 308\sqrt{3}-1 and 308\sqrt{3}-1 to get \left(308\sqrt{3}-1\right)^{2}.
\frac{94864\left(\sqrt{3}\right)^{2}-616\sqrt{3}+1}{\left(308\sqrt{3}\right)^{2}-1^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(308\sqrt{3}-1\right)^{2}.
\frac{94864\times 3-616\sqrt{3}+1}{\left(308\sqrt{3}\right)^{2}-1^{2}}
The square of \sqrt{3} is 3.
\frac{284592-616\sqrt{3}+1}{\left(308\sqrt{3}\right)^{2}-1^{2}}
Multiply 94864 and 3 to get 284592.
\frac{284593-616\sqrt{3}}{\left(308\sqrt{3}\right)^{2}-1^{2}}
Add 284592 and 1 to get 284593.
\frac{284593-616\sqrt{3}}{308^{2}\left(\sqrt{3}\right)^{2}-1^{2}}
Expand \left(308\sqrt{3}\right)^{2}.
\frac{284593-616\sqrt{3}}{94864\left(\sqrt{3}\right)^{2}-1^{2}}
Calculate 308 to the power of 2 and get 94864.
\frac{284593-616\sqrt{3}}{94864\times 3-1^{2}}
The square of \sqrt{3} is 3.
\frac{284593-616\sqrt{3}}{284592-1^{2}}
Multiply 94864 and 3 to get 284592.
\frac{284593-616\sqrt{3}}{284592-1}
Calculate 1 to the power of 2 and get 1.
\frac{284593-616\sqrt{3}}{284591}
Subtract 1 from 284592 to get 284591.