Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\sqrt{3}}{2}-\frac{1.54}{9.4864}}{\frac{\sqrt{3}}{2}+\frac{1.54}{3.08^{2}}}
Calculate 3.08 to the power of 2 and get 9.4864.
\frac{\frac{\sqrt{3}}{2}-\frac{15400}{94864}}{\frac{\sqrt{3}}{2}+\frac{1.54}{3.08^{2}}}
Expand \frac{1.54}{9.4864} by multiplying both numerator and the denominator by 10000.
\frac{\frac{\sqrt{3}}{2}-\frac{25}{154}}{\frac{\sqrt{3}}{2}+\frac{1.54}{3.08^{2}}}
Reduce the fraction \frac{15400}{94864} to lowest terms by extracting and canceling out 616.
\frac{\frac{77\sqrt{3}}{154}-\frac{25}{154}}{\frac{\sqrt{3}}{2}+\frac{1.54}{3.08^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 154 is 154. Multiply \frac{\sqrt{3}}{2} times \frac{77}{77}.
\frac{\frac{77\sqrt{3}-25}{154}}{\frac{\sqrt{3}}{2}+\frac{1.54}{3.08^{2}}}
Since \frac{77\sqrt{3}}{154} and \frac{25}{154} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{77\sqrt{3}-25}{154}}{\frac{\sqrt{3}}{2}+\frac{1.54}{9.4864}}
Calculate 3.08 to the power of 2 and get 9.4864.
\frac{\frac{77\sqrt{3}-25}{154}}{\frac{\sqrt{3}}{2}+\frac{15400}{94864}}
Expand \frac{1.54}{9.4864} by multiplying both numerator and the denominator by 10000.
\frac{\frac{77\sqrt{3}-25}{154}}{\frac{\sqrt{3}}{2}+\frac{25}{154}}
Reduce the fraction \frac{15400}{94864} to lowest terms by extracting and canceling out 616.
\frac{\frac{77\sqrt{3}-25}{154}}{\frac{77\sqrt{3}}{154}+\frac{25}{154}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 154 is 154. Multiply \frac{\sqrt{3}}{2} times \frac{77}{77}.
\frac{\frac{77\sqrt{3}-25}{154}}{\frac{77\sqrt{3}+25}{154}}
Since \frac{77\sqrt{3}}{154} and \frac{25}{154} have the same denominator, add them by adding their numerators.
\frac{\left(77\sqrt{3}-25\right)\times 154}{154\left(77\sqrt{3}+25\right)}
Divide \frac{77\sqrt{3}-25}{154} by \frac{77\sqrt{3}+25}{154} by multiplying \frac{77\sqrt{3}-25}{154} by the reciprocal of \frac{77\sqrt{3}+25}{154}.
\frac{77\sqrt{3}-25}{77\sqrt{3}+25}
Cancel out 154 in both numerator and denominator.
\frac{\left(77\sqrt{3}-25\right)\left(77\sqrt{3}-25\right)}{\left(77\sqrt{3}+25\right)\left(77\sqrt{3}-25\right)}
Rationalize the denominator of \frac{77\sqrt{3}-25}{77\sqrt{3}+25} by multiplying numerator and denominator by 77\sqrt{3}-25.
\frac{\left(77\sqrt{3}-25\right)\left(77\sqrt{3}-25\right)}{\left(77\sqrt{3}\right)^{2}-25^{2}}
Consider \left(77\sqrt{3}+25\right)\left(77\sqrt{3}-25\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(77\sqrt{3}-25\right)^{2}}{\left(77\sqrt{3}\right)^{2}-25^{2}}
Multiply 77\sqrt{3}-25 and 77\sqrt{3}-25 to get \left(77\sqrt{3}-25\right)^{2}.
\frac{5929\left(\sqrt{3}\right)^{2}-3850\sqrt{3}+625}{\left(77\sqrt{3}\right)^{2}-25^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(77\sqrt{3}-25\right)^{2}.
\frac{5929\times 3-3850\sqrt{3}+625}{\left(77\sqrt{3}\right)^{2}-25^{2}}
The square of \sqrt{3} is 3.
\frac{17787-3850\sqrt{3}+625}{\left(77\sqrt{3}\right)^{2}-25^{2}}
Multiply 5929 and 3 to get 17787.
\frac{18412-3850\sqrt{3}}{\left(77\sqrt{3}\right)^{2}-25^{2}}
Add 17787 and 625 to get 18412.
\frac{18412-3850\sqrt{3}}{77^{2}\left(\sqrt{3}\right)^{2}-25^{2}}
Expand \left(77\sqrt{3}\right)^{2}.
\frac{18412-3850\sqrt{3}}{5929\left(\sqrt{3}\right)^{2}-25^{2}}
Calculate 77 to the power of 2 and get 5929.
\frac{18412-3850\sqrt{3}}{5929\times 3-25^{2}}
The square of \sqrt{3} is 3.
\frac{18412-3850\sqrt{3}}{17787-25^{2}}
Multiply 5929 and 3 to get 17787.
\frac{18412-3850\sqrt{3}}{17787-625}
Calculate 25 to the power of 2 and get 625.
\frac{18412-3850\sqrt{3}}{17162}
Subtract 625 from 17787 to get 17162.