Solve for y
y=-\frac{3x^{2}}{\sqrt{2}x-10}
x\neq 5\sqrt{2}\text{ and }x\neq 0
Solve for x (complex solution)
x=\frac{\sqrt{2}\left(\sqrt{y\left(y+60\right)}-y\right)}{6}
x=-\frac{\sqrt{2}\left(\sqrt{y\left(y+60\right)}+y\right)}{6}\text{, }y\neq 0
Solve for x
x=\frac{\sqrt{2}\left(\sqrt{y\left(y+60\right)}-y\right)}{6}
x=-\frac{\sqrt{2}\left(\sqrt{y\left(y+60\right)}+y\right)}{6}\text{, }y>0\text{ or }y\leq -60
Graph
Share
Copied to clipboard
\frac{\frac{\sqrt{2}x}{2}}{5-\frac{\sqrt{2}}{2}x}=\frac{y}{\frac{3\sqrt{2}}{2}x}
Express \frac{\sqrt{2}}{2}x as a single fraction.
\frac{\frac{\sqrt{2}x}{2}}{5-\frac{\sqrt{2}x}{2}}=\frac{y}{\frac{3\sqrt{2}}{2}x}
Express \frac{\sqrt{2}}{2}x as a single fraction.
\frac{\frac{\sqrt{2}x}{2}}{5-\frac{\sqrt{2}x}{2}}=\frac{y}{\frac{3\sqrt{2}x}{2}}
Express \frac{3\sqrt{2}}{2}x as a single fraction.
\frac{\frac{\sqrt{2}x}{2}}{5-\frac{\sqrt{2}x}{2}}=\frac{y\times 2}{3\sqrt{2}x}
Divide y by \frac{3\sqrt{2}x}{2} by multiplying y by the reciprocal of \frac{3\sqrt{2}x}{2}.
\frac{\frac{\sqrt{2}x}{2}}{5-\frac{\sqrt{2}x}{2}}=\frac{2y}{3\sqrt{2}x}
Factor the expressions that are not already factored in \frac{y\times 2}{3\sqrt{2}x}.
\frac{\frac{\sqrt{2}x}{2}}{5-\frac{\sqrt{2}x}{2}}=\frac{\sqrt{2}y}{3x}
Cancel out \sqrt{2} in both numerator and denominator.
\frac{\sqrt{2}x}{2\left(5-\frac{\sqrt{2}x}{2}\right)}=\frac{\sqrt{2}y}{3x}
Express \frac{\frac{\sqrt{2}x}{2}}{5-\frac{\sqrt{2}x}{2}} as a single fraction.
\frac{\sqrt{2}y}{3x}=\frac{\sqrt{2}x}{2\left(5-\frac{\sqrt{2}x}{2}\right)}
Swap sides so that all variable terms are on the left hand side.
\frac{\sqrt{2}y}{3x}=\frac{\sqrt{2}x}{10+2\left(-\frac{\sqrt{2}x}{2}\right)}
Use the distributive property to multiply 2 by 5-\frac{\sqrt{2}x}{2}.
\frac{\sqrt{2}y}{3x}=\frac{\sqrt{2}x}{10+\frac{-2\sqrt{2}x}{2}}
Express 2\left(-\frac{\sqrt{2}x}{2}\right) as a single fraction.
\frac{\sqrt{2}y}{3x}=\frac{\sqrt{2}x}{10-\sqrt{2}x}
Cancel out 2 and 2.
\frac{\sqrt{2}y}{3x}=\frac{\sqrt{2}x\left(10+\sqrt{2}x\right)}{\left(10-\sqrt{2}x\right)\left(10+\sqrt{2}x\right)}
Rationalize the denominator of \frac{\sqrt{2}x}{10-\sqrt{2}x} by multiplying numerator and denominator by 10+\sqrt{2}x.
\frac{\sqrt{2}y}{3x}=\frac{\sqrt{2}x\left(10+\sqrt{2}x\right)}{10^{2}-\left(\sqrt{2}x\right)^{2}}
Consider \left(10-\sqrt{2}x\right)\left(10+\sqrt{2}x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}y}{3x}=\frac{\sqrt{2}x\left(10+\sqrt{2}x\right)}{100-\left(\sqrt{2}x\right)^{2}}
Calculate 10 to the power of 2 and get 100.
\frac{\sqrt{2}y}{3x}=\frac{\sqrt{2}x\left(10+\sqrt{2}x\right)}{100-\left(\sqrt{2}\right)^{2}x^{2}}
Expand \left(\sqrt{2}x\right)^{2}.
\frac{\sqrt{2}y}{3x}=\frac{\sqrt{2}x\left(10+\sqrt{2}x\right)}{100-2x^{2}}
The square of \sqrt{2} is 2.
\frac{\sqrt{2}y}{3x}=\frac{\sqrt{2}x\left(\sqrt{2}x+10\right)}{2\left(-x^{2}+50\right)}
Factor the expressions that are not already factored in \frac{\sqrt{2}x\left(10+\sqrt{2}x\right)}{100-2x^{2}}.
\frac{\sqrt{2}y}{3x}=\frac{x\left(\sqrt{2}x+10\right)}{\sqrt{2}\left(-x^{2}+50\right)}
Cancel out \sqrt{2} in both numerator and denominator.
\sqrt{2}y=\frac{3}{2}x\left(-x^{2}+50\right)^{-1}\times 2^{\frac{1}{2}}x\left(\sqrt{2}x+10\right)
Multiply both sides of the equation by 3x.
\sqrt{2}y=\frac{3}{2}\sqrt{2}\times \frac{1}{-x^{2}+50}xx\left(\sqrt{2}x+10\right)
Reorder the terms.
\sqrt{2}y\times 2\left(x^{2}-50\right)=\frac{3}{2}\sqrt{2}\left(-2\right)\times 1xx\left(\sqrt{2}x+10\right)
Multiply both sides of the equation by 2\left(x^{2}-50\right), the least common multiple of 2,-x^{2}+50.
\sqrt{2}y\times 2\left(x^{2}-50\right)=\frac{3}{2}\sqrt{2}\left(-2\right)\times 1x^{2}\left(\sqrt{2}x+10\right)
Multiply x and x to get x^{2}.
2\sqrt{2}yx^{2}-50\sqrt{2}y\times 2=\frac{3}{2}\sqrt{2}\left(-2\right)\times 1x^{2}\left(\sqrt{2}x+10\right)
Use the distributive property to multiply \sqrt{2}y\times 2 by x^{2}-50.
2\sqrt{2}yx^{2}-100\sqrt{2}y=\frac{3}{2}\sqrt{2}\left(-2\right)\times 1x^{2}\left(\sqrt{2}x+10\right)
Multiply -50 and 2 to get -100.
2\sqrt{2}yx^{2}-100\sqrt{2}y=-3\sqrt{2}x^{2}\left(\sqrt{2}x+10\right)
Multiply \frac{3}{2} and -2 to get -3.
2\sqrt{2}yx^{2}-100\sqrt{2}y=-3\left(\sqrt{2}\right)^{2}x^{3}-30x^{2}\sqrt{2}
Use the distributive property to multiply -3\sqrt{2}x^{2} by \sqrt{2}x+10.
2\sqrt{2}yx^{2}-100\sqrt{2}y=-3\times 2x^{3}-30x^{2}\sqrt{2}
The square of \sqrt{2} is 2.
2\sqrt{2}yx^{2}-100\sqrt{2}y=-6x^{3}-30x^{2}\sqrt{2}
Multiply -3 and 2 to get -6.
\left(2\sqrt{2}x^{2}-100\sqrt{2}\right)y=-6x^{3}-30x^{2}\sqrt{2}
Combine all terms containing y.
\left(2\sqrt{2}x^{2}-100\sqrt{2}\right)y=-6x^{3}-30\sqrt{2}x^{2}
The equation is in standard form.
\frac{\left(2\sqrt{2}x^{2}-100\sqrt{2}\right)y}{2\sqrt{2}x^{2}-100\sqrt{2}}=-\frac{6\left(x+5\sqrt{2}\right)x^{2}}{2\sqrt{2}x^{2}-100\sqrt{2}}
Divide both sides by 2\sqrt{2}x^{2}-100\sqrt{2}.
y=-\frac{6\left(x+5\sqrt{2}\right)x^{2}}{2\sqrt{2}x^{2}-100\sqrt{2}}
Dividing by 2\sqrt{2}x^{2}-100\sqrt{2} undoes the multiplication by 2\sqrt{2}x^{2}-100\sqrt{2}.
y=-\frac{3\sqrt{2}\left(x+5\sqrt{2}\right)x^{2}}{2\left(x^{2}-50\right)}
Divide -6\left(x+5\sqrt{2}\right)x^{2} by 2\sqrt{2}x^{2}-100\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}