Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{13}\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\right)}{\sqrt{3}\times 2}
Express \frac{\frac{\sqrt{13}\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\right)}{\sqrt{3}}}{2} as a single fraction.
\frac{\sqrt{13}\sqrt{2}}{\sqrt{3}\times 2}
Combine \frac{\sqrt{2}}{2} and \frac{\sqrt{2}}{2} to get \sqrt{2}.
\frac{\sqrt{26}}{\sqrt{3}\times 2}
To multiply \sqrt{13} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{26}\sqrt{3}}{\left(\sqrt{3}\right)^{2}\times 2}
Rationalize the denominator of \frac{\sqrt{26}}{\sqrt{3}\times 2} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{26}\sqrt{3}}{3\times 2}
The square of \sqrt{3} is 3.
\frac{\sqrt{78}}{3\times 2}
To multiply \sqrt{26} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{78}}{6}
Multiply 3 and 2 to get 6.