Skip to main content
Evaluate
Tick mark Image

Share

\frac{\sqrt{\sqrt{3\left(\sqrt{36}-\sqrt{9}\right)}}\left(\sqrt{96\sqrt{9}}-\sqrt{4}\right)}{\sqrt{2\sqrt{25}+5\sqrt{9}}\sqrt{16}}
Divide \frac{\sqrt{\sqrt{3\left(\sqrt{36}-\sqrt{9}\right)}}}{\sqrt{2\sqrt{25}+5\sqrt{9}}} by \frac{\sqrt{16}}{\sqrt{96\sqrt{9}}-\sqrt{4}} by multiplying \frac{\sqrt{\sqrt{3\left(\sqrt{36}-\sqrt{9}\right)}}}{\sqrt{2\sqrt{25}+5\sqrt{9}}} by the reciprocal of \frac{\sqrt{16}}{\sqrt{96\sqrt{9}}-\sqrt{4}}.
\frac{\sqrt{\sqrt{3\left(6-\sqrt{9}\right)}}\left(\sqrt{96\sqrt{9}}-\sqrt{4}\right)}{\sqrt{2\sqrt{25}+5\sqrt{9}}\sqrt{16}}
Calculate the square root of 36 and get 6.
\frac{\sqrt{\sqrt{3\left(6-3\right)}}\left(\sqrt{96\sqrt{9}}-\sqrt{4}\right)}{\sqrt{2\sqrt{25}+5\sqrt{9}}\sqrt{16}}
Calculate the square root of 9 and get 3.
\frac{\sqrt{\sqrt{3\times 3}}\left(\sqrt{96\sqrt{9}}-\sqrt{4}\right)}{\sqrt{2\sqrt{25}+5\sqrt{9}}\sqrt{16}}
Subtract 3 from 6 to get 3.
\frac{\sqrt{\sqrt{9}}\left(\sqrt{96\sqrt{9}}-\sqrt{4}\right)}{\sqrt{2\sqrt{25}+5\sqrt{9}}\sqrt{16}}
Multiply 3 and 3 to get 9.
\frac{\sqrt{3}\left(\sqrt{96\sqrt{9}}-\sqrt{4}\right)}{\sqrt{2\sqrt{25}+5\sqrt{9}}\sqrt{16}}
Calculate the square root of 9 and get 3.
\frac{\sqrt{3}\left(\sqrt{96\times 3}-\sqrt{4}\right)}{\sqrt{2\sqrt{25}+5\sqrt{9}}\sqrt{16}}
Calculate the square root of 9 and get 3.
\frac{\sqrt{3}\left(\sqrt{288}-\sqrt{4}\right)}{\sqrt{2\sqrt{25}+5\sqrt{9}}\sqrt{16}}
Multiply 96 and 3 to get 288.
\frac{\sqrt{3}\left(12\sqrt{2}-\sqrt{4}\right)}{\sqrt{2\sqrt{25}+5\sqrt{9}}\sqrt{16}}
Factor 288=12^{2}\times 2. Rewrite the square root of the product \sqrt{12^{2}\times 2} as the product of square roots \sqrt{12^{2}}\sqrt{2}. Take the square root of 12^{2}.
\frac{\sqrt{3}\left(12\sqrt{2}-2\right)}{\sqrt{2\sqrt{25}+5\sqrt{9}}\sqrt{16}}
Calculate the square root of 4 and get 2.
\frac{\sqrt{3}\left(12\sqrt{2}-2\right)}{\sqrt{2\times 5+5\sqrt{9}}\sqrt{16}}
Calculate the square root of 25 and get 5.
\frac{\sqrt{3}\left(12\sqrt{2}-2\right)}{\sqrt{10+5\sqrt{9}}\sqrt{16}}
Multiply 2 and 5 to get 10.
\frac{\sqrt{3}\left(12\sqrt{2}-2\right)}{\sqrt{10+5\times 3}\sqrt{16}}
Calculate the square root of 9 and get 3.
\frac{\sqrt{3}\left(12\sqrt{2}-2\right)}{\sqrt{10+15}\sqrt{16}}
Multiply 5 and 3 to get 15.
\frac{\sqrt{3}\left(12\sqrt{2}-2\right)}{\sqrt{25}\sqrt{16}}
Add 10 and 15 to get 25.
\frac{\sqrt{3}\left(12\sqrt{2}-2\right)}{5\sqrt{16}}
Calculate the square root of 25 and get 5.
\frac{\sqrt{3}\left(12\sqrt{2}-2\right)}{5\times 4}
Calculate the square root of 16 and get 4.
\frac{\sqrt{3}\left(12\sqrt{2}-2\right)}{20}
Multiply 5 and 4 to get 20.
\frac{12\sqrt{3}\sqrt{2}-2\sqrt{3}}{20}
Use the distributive property to multiply \sqrt{3} by 12\sqrt{2}-2.
\frac{12\sqrt{6}-2\sqrt{3}}{20}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.