\frac{ \frac{ \sqrt{ \sqrt{ 3( \sqrt{ 36 } - \sqrt{ 9) } } } }{ \sqrt{ 2 \sqrt{ 25 } +5 \sqrt{ 9 } } } }{ \frac{ \sqrt{ 16 } }{ \sqrt{ 96 \sqrt{ 9 } } - \sqrt{ 4 } } }
Evaluate
\frac{6\sqrt{6}-\sqrt{3}}{10}\approx 1.296488765
Share
Copied to clipboard
\frac{\sqrt{\sqrt{3\left(\sqrt{36}-\sqrt{9}\right)}}\left(\sqrt{96\sqrt{9}}-\sqrt{4}\right)}{\sqrt{2\sqrt{25}+5\sqrt{9}}\sqrt{16}}
Divide \frac{\sqrt{\sqrt{3\left(\sqrt{36}-\sqrt{9}\right)}}}{\sqrt{2\sqrt{25}+5\sqrt{9}}} by \frac{\sqrt{16}}{\sqrt{96\sqrt{9}}-\sqrt{4}} by multiplying \frac{\sqrt{\sqrt{3\left(\sqrt{36}-\sqrt{9}\right)}}}{\sqrt{2\sqrt{25}+5\sqrt{9}}} by the reciprocal of \frac{\sqrt{16}}{\sqrt{96\sqrt{9}}-\sqrt{4}}.
\frac{\sqrt{\sqrt{3\left(6-\sqrt{9}\right)}}\left(\sqrt{96\sqrt{9}}-\sqrt{4}\right)}{\sqrt{2\sqrt{25}+5\sqrt{9}}\sqrt{16}}
Calculate the square root of 36 and get 6.
\frac{\sqrt{\sqrt{3\left(6-3\right)}}\left(\sqrt{96\sqrt{9}}-\sqrt{4}\right)}{\sqrt{2\sqrt{25}+5\sqrt{9}}\sqrt{16}}
Calculate the square root of 9 and get 3.
\frac{\sqrt{\sqrt{3\times 3}}\left(\sqrt{96\sqrt{9}}-\sqrt{4}\right)}{\sqrt{2\sqrt{25}+5\sqrt{9}}\sqrt{16}}
Subtract 3 from 6 to get 3.
\frac{\sqrt{\sqrt{9}}\left(\sqrt{96\sqrt{9}}-\sqrt{4}\right)}{\sqrt{2\sqrt{25}+5\sqrt{9}}\sqrt{16}}
Multiply 3 and 3 to get 9.
\frac{\sqrt{3}\left(\sqrt{96\sqrt{9}}-\sqrt{4}\right)}{\sqrt{2\sqrt{25}+5\sqrt{9}}\sqrt{16}}
Calculate the square root of 9 and get 3.
\frac{\sqrt{3}\left(\sqrt{96\times 3}-\sqrt{4}\right)}{\sqrt{2\sqrt{25}+5\sqrt{9}}\sqrt{16}}
Calculate the square root of 9 and get 3.
\frac{\sqrt{3}\left(\sqrt{288}-\sqrt{4}\right)}{\sqrt{2\sqrt{25}+5\sqrt{9}}\sqrt{16}}
Multiply 96 and 3 to get 288.
\frac{\sqrt{3}\left(12\sqrt{2}-\sqrt{4}\right)}{\sqrt{2\sqrt{25}+5\sqrt{9}}\sqrt{16}}
Factor 288=12^{2}\times 2. Rewrite the square root of the product \sqrt{12^{2}\times 2} as the product of square roots \sqrt{12^{2}}\sqrt{2}. Take the square root of 12^{2}.
\frac{\sqrt{3}\left(12\sqrt{2}-2\right)}{\sqrt{2\sqrt{25}+5\sqrt{9}}\sqrt{16}}
Calculate the square root of 4 and get 2.
\frac{\sqrt{3}\left(12\sqrt{2}-2\right)}{\sqrt{2\times 5+5\sqrt{9}}\sqrt{16}}
Calculate the square root of 25 and get 5.
\frac{\sqrt{3}\left(12\sqrt{2}-2\right)}{\sqrt{10+5\sqrt{9}}\sqrt{16}}
Multiply 2 and 5 to get 10.
\frac{\sqrt{3}\left(12\sqrt{2}-2\right)}{\sqrt{10+5\times 3}\sqrt{16}}
Calculate the square root of 9 and get 3.
\frac{\sqrt{3}\left(12\sqrt{2}-2\right)}{\sqrt{10+15}\sqrt{16}}
Multiply 5 and 3 to get 15.
\frac{\sqrt{3}\left(12\sqrt{2}-2\right)}{\sqrt{25}\sqrt{16}}
Add 10 and 15 to get 25.
\frac{\sqrt{3}\left(12\sqrt{2}-2\right)}{5\sqrt{16}}
Calculate the square root of 25 and get 5.
\frac{\sqrt{3}\left(12\sqrt{2}-2\right)}{5\times 4}
Calculate the square root of 16 and get 4.
\frac{\sqrt{3}\left(12\sqrt{2}-2\right)}{20}
Multiply 5 and 4 to get 20.
\frac{12\sqrt{3}\sqrt{2}-2\sqrt{3}}{20}
Use the distributive property to multiply \sqrt{3} by 12\sqrt{2}-2.
\frac{12\sqrt{6}-2\sqrt{3}}{20}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}