Evaluate
\frac{139}{24}\approx 5.791666667
Factor
\frac{139}{2 ^ {3} \cdot 3} = 5\frac{19}{24} = 5.791666666666667
Share
Copied to clipboard
\frac{\frac{\frac{1}{2}}{\left(\frac{2}{3}\right)^{-1}}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Calculate \sqrt[5]{\frac{1}{32}} and get \frac{1}{2}.
\frac{\frac{\frac{1}{2}}{\frac{3}{2}}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Calculate \frac{2}{3} to the power of -1 and get \frac{3}{2}.
\frac{\frac{1}{2}\times \frac{2}{3}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Divide \frac{1}{2} by \frac{3}{2} by multiplying \frac{1}{2} by the reciprocal of \frac{3}{2}.
\frac{\frac{1}{3}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Multiply \frac{1}{2} and \frac{2}{3} to get \frac{1}{3}.
\frac{\frac{1}{3}}{\frac{2}{3}\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Subtract \frac{1}{3} from 1 to get \frac{2}{3}.
\frac{\frac{1}{3}}{\frac{3}{2}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Multiply \frac{2}{3} and \frac{9}{4} to get \frac{3}{2}.
\frac{\frac{1}{3}}{2}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Add \frac{3}{2} and \frac{1}{2} to get 2.
\frac{1}{3\times 2}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Express \frac{\frac{1}{3}}{2} as a single fraction.
\frac{1}{6}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Multiply 3 and 2 to get 6.
\frac{1}{6}+\frac{\sqrt{\frac{9}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Subtract \frac{16}{25} from 1 to get \frac{9}{25}.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Rewrite the square root of the division \frac{9}{25} as the division of square roots \frac{\sqrt{9}}{\sqrt{25}}. Take the square root of both numerator and denominator.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\frac{15}{2}}}
Calculate \frac{15}{2} to the power of 1 and get \frac{15}{2}.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{4}{5}\times \frac{2}{15}}
Divide \frac{4}{5} by \frac{15}{2} by multiplying \frac{4}{5} by the reciprocal of \frac{15}{2}.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{8}{75}}
Multiply \frac{4}{5} and \frac{2}{15} to get \frac{8}{75}.
\frac{1}{6}+\frac{3}{5}\times \frac{75}{8}
Divide \frac{3}{5} by \frac{8}{75} by multiplying \frac{3}{5} by the reciprocal of \frac{8}{75}.
\frac{1}{6}+\frac{45}{8}
Multiply \frac{3}{5} and \frac{75}{8} to get \frac{45}{8}.
\frac{139}{24}
Add \frac{1}{6} and \frac{45}{8} to get \frac{139}{24}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}