Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{\frac{\frac{1}{2}}{\left(\frac{2}{3}\right)^{-1}}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{-1}}}
Calculate \sqrt[5]{\frac{1}{32}} and get \frac{1}{2}.
\frac{\frac{\frac{1}{2}}{\frac{3}{2}}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{-1}}}
Calculate \frac{2}{3} to the power of -1 and get \frac{3}{2}.
\frac{\frac{1}{2}\times \frac{2}{3}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{-1}}}
Divide \frac{1}{2} by \frac{3}{2} by multiplying \frac{1}{2} by the reciprocal of \frac{3}{2}.
\frac{\frac{1}{3}}{\left(1-\frac{1}{3}\right)\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{-1}}}
Multiply \frac{1}{2} and \frac{2}{3} to get \frac{1}{3}.
\frac{\frac{1}{3}}{\frac{2}{3}\times \frac{9}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{-1}}}
Subtract \frac{1}{3} from 1 to get \frac{2}{3}.
\frac{\frac{1}{3}}{\frac{3}{2}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{-1}}}
Multiply \frac{2}{3} and \frac{9}{4} to get \frac{3}{2}.
\frac{\frac{1}{3}}{2}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{-1}}}
Add \frac{3}{2} and \frac{1}{2} to get 2.
\frac{1}{3\times 2}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{-1}}}
Express \frac{\frac{1}{3}}{2} as a single fraction.
\frac{1}{6}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{-1}}}
Multiply 3 and 2 to get 6.
\frac{1}{6}+\frac{\sqrt{\frac{9}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{-1}}}
Subtract \frac{16}{25} from 1 to get \frac{9}{25}.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{-1}}}
Rewrite the square root of the division \frac{9}{25} as the division of square roots \frac{\sqrt{9}}{\sqrt{25}}. Take the square root of both numerator and denominator.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\frac{2}{15}}}
Calculate \frac{15}{2} to the power of -1 and get \frac{2}{15}.
\frac{1}{6}+\frac{\frac{3}{5}}{\frac{4}{5}\times \frac{15}{2}}
Divide \frac{4}{5} by \frac{2}{15} by multiplying \frac{4}{5} by the reciprocal of \frac{2}{15}.
\frac{1}{6}+\frac{\frac{3}{5}}{6}
Multiply \frac{4}{5} and \frac{15}{2} to get 6.
\frac{1}{6}+\frac{3}{5\times 6}
Express \frac{\frac{3}{5}}{6} as a single fraction.
\frac{1}{6}+\frac{3}{30}
Multiply 5 and 6 to get 30.
\frac{1}{6}+\frac{1}{10}
Reduce the fraction \frac{3}{30} to lowest terms by extracting and canceling out 3.
\frac{4}{15}
Add \frac{1}{6} and \frac{1}{10} to get \frac{4}{15}.