Evaluate
-\frac{5}{4}=-1.25
Factor
-\frac{5}{4} = -1\frac{1}{4} = -1.25
Share
Copied to clipboard
\frac{\frac{|-\frac{1}{2}+\frac{2}{9}|}{-\frac{-2}{3}}}{\frac{1}{2}-\frac{5}{6}}
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
\frac{\frac{|-\frac{9}{18}+\frac{4}{18}|}{-\frac{-2}{3}}}{\frac{1}{2}-\frac{5}{6}}
Least common multiple of 2 and 9 is 18. Convert -\frac{1}{2} and \frac{2}{9} to fractions with denominator 18.
\frac{\frac{|\frac{-9+4}{18}|}{-\frac{-2}{3}}}{\frac{1}{2}-\frac{5}{6}}
Since -\frac{9}{18} and \frac{4}{18} have the same denominator, add them by adding their numerators.
\frac{\frac{|-\frac{5}{18}|}{-\frac{-2}{3}}}{\frac{1}{2}-\frac{5}{6}}
Add -9 and 4 to get -5.
\frac{\frac{\frac{5}{18}}{-\frac{-2}{3}}}{\frac{1}{2}-\frac{5}{6}}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{5}{18} is \frac{5}{18}.
\frac{\frac{\frac{5}{18}}{-\left(-\frac{2}{3}\right)}}{\frac{1}{2}-\frac{5}{6}}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{\frac{\frac{5}{18}}{\frac{2}{3}}}{\frac{1}{2}-\frac{5}{6}}
The opposite of -\frac{2}{3} is \frac{2}{3}.
\frac{\frac{5}{18}\times \frac{3}{2}}{\frac{1}{2}-\frac{5}{6}}
Divide \frac{5}{18} by \frac{2}{3} by multiplying \frac{5}{18} by the reciprocal of \frac{2}{3}.
\frac{\frac{5\times 3}{18\times 2}}{\frac{1}{2}-\frac{5}{6}}
Multiply \frac{5}{18} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{15}{36}}{\frac{1}{2}-\frac{5}{6}}
Do the multiplications in the fraction \frac{5\times 3}{18\times 2}.
\frac{\frac{5}{12}}{\frac{1}{2}-\frac{5}{6}}
Reduce the fraction \frac{15}{36} to lowest terms by extracting and canceling out 3.
\frac{\frac{5}{12}}{\frac{3}{6}-\frac{5}{6}}
Least common multiple of 2 and 6 is 6. Convert \frac{1}{2} and \frac{5}{6} to fractions with denominator 6.
\frac{\frac{5}{12}}{\frac{3-5}{6}}
Since \frac{3}{6} and \frac{5}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5}{12}}{\frac{-2}{6}}
Subtract 5 from 3 to get -2.
\frac{\frac{5}{12}}{-\frac{1}{3}}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
\frac{5}{12}\left(-3\right)
Divide \frac{5}{12} by -\frac{1}{3} by multiplying \frac{5}{12} by the reciprocal of -\frac{1}{3}.
\frac{5\left(-3\right)}{12}
Express \frac{5}{12}\left(-3\right) as a single fraction.
\frac{-15}{12}
Multiply 5 and -3 to get -15.
-\frac{5}{4}
Reduce the fraction \frac{-15}{12} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}