Evaluate
-0.45
Factor
-0.45
Share
Copied to clipboard
\frac{\frac{2}{3\left(-4\right)}-\frac{1}{4}-0.4}{\frac{1}{3}}-\left(-2\right)
Express \frac{\frac{2}{3}}{-4} as a single fraction.
\frac{\frac{2}{-12}-\frac{1}{4}-0.4}{\frac{1}{3}}-\left(-2\right)
Multiply 3 and -4 to get -12.
\frac{-\frac{1}{6}-\frac{1}{4}-0.4}{\frac{1}{3}}-\left(-2\right)
Reduce the fraction \frac{2}{-12} to lowest terms by extracting and canceling out 2.
\frac{-\frac{2}{12}-\frac{3}{12}-0.4}{\frac{1}{3}}-\left(-2\right)
Least common multiple of 6 and 4 is 12. Convert -\frac{1}{6} and \frac{1}{4} to fractions with denominator 12.
\frac{\frac{-2-3}{12}-0.4}{\frac{1}{3}}-\left(-2\right)
Since -\frac{2}{12} and \frac{3}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{5}{12}-0.4}{\frac{1}{3}}-\left(-2\right)
Subtract 3 from -2 to get -5.
\frac{-\frac{5}{12}-\frac{2}{5}}{\frac{1}{3}}-\left(-2\right)
Convert decimal number 0.4 to fraction \frac{4}{10}. Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
\frac{-\frac{25}{60}-\frac{24}{60}}{\frac{1}{3}}-\left(-2\right)
Least common multiple of 12 and 5 is 60. Convert -\frac{5}{12} and \frac{2}{5} to fractions with denominator 60.
\frac{\frac{-25-24}{60}}{\frac{1}{3}}-\left(-2\right)
Since -\frac{25}{60} and \frac{24}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{49}{60}}{\frac{1}{3}}-\left(-2\right)
Subtract 24 from -25 to get -49.
-\frac{49}{60}\times 3-\left(-2\right)
Divide -\frac{49}{60} by \frac{1}{3} by multiplying -\frac{49}{60} by the reciprocal of \frac{1}{3}.
\frac{-49\times 3}{60}-\left(-2\right)
Express -\frac{49}{60}\times 3 as a single fraction.
\frac{-147}{60}-\left(-2\right)
Multiply -49 and 3 to get -147.
-\frac{49}{20}-\left(-2\right)
Reduce the fraction \frac{-147}{60} to lowest terms by extracting and canceling out 3.
-\frac{49}{20}+2
The opposite of -2 is 2.
-\frac{49}{20}+\frac{40}{20}
Convert 2 to fraction \frac{40}{20}.
\frac{-49+40}{20}
Since -\frac{49}{20} and \frac{40}{20} have the same denominator, add them by adding their numerators.
-\frac{9}{20}
Add -49 and 40 to get -9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}