Evaluate
\frac{931}{3924}\approx 0.2372579
Factor
\frac{19 \cdot 7 ^ {2}}{109 \cdot 2 ^ {2} \cdot 3 ^ {2}} = 0.2372579001019368
Share
Copied to clipboard
\frac{\frac{19.62}{2}-\frac{1}{2}}{9.81\times 4}
Express \frac{\frac{\frac{19.62}{2}-\frac{1}{2}}{9.81}}{4} as a single fraction.
\frac{\frac{1962}{200}-\frac{1}{2}}{9.81\times 4}
Expand \frac{19.62}{2} by multiplying both numerator and the denominator by 100.
\frac{\frac{981}{100}-\frac{1}{2}}{9.81\times 4}
Reduce the fraction \frac{1962}{200} to lowest terms by extracting and canceling out 2.
\frac{\frac{981}{100}-\frac{50}{100}}{9.81\times 4}
Least common multiple of 100 and 2 is 100. Convert \frac{981}{100} and \frac{1}{2} to fractions with denominator 100.
\frac{\frac{981-50}{100}}{9.81\times 4}
Since \frac{981}{100} and \frac{50}{100} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{931}{100}}{9.81\times 4}
Subtract 50 from 981 to get 931.
\frac{\frac{931}{100}}{39.24}
Multiply 9.81 and 4 to get 39.24.
\frac{931}{100\times 39.24}
Express \frac{\frac{931}{100}}{39.24} as a single fraction.
\frac{931}{3924}
Multiply 100 and 39.24 to get 3924.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}