Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{\frac{\frac{\left(3^{7}\times 0.3\right)^{-4}\times 2^{2}}{3^{4}\times 2^{-2}-4^{2}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}}}{\frac{\frac{3^{4}-27-64}{2^{4}\times 2\times 2^{3}}}{\frac{4\times 16\times 27\times 3^{-2}}{2^{6}\times 3^{-2}\times 3^{3}\times 2^{6}}}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 1 from 3 to get 2.
\frac{\frac{\frac{\left(3^{7}\times 0.3\right)^{-4}\times 2^{2}}{3^{4}\times 2^{-2}-4^{2}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}}}{\frac{\frac{3^{4}-27-64}{2^{5}\times 2^{3}}}{\frac{4\times 16\times 27\times 3^{-2}}{2^{6}\times 3^{-2}\times 3^{3}\times 2^{6}}}}
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
\frac{\frac{\frac{\left(3^{7}\times 0.3\right)^{-4}\times 2^{2}}{3^{4}\times 2^{-2}-4^{2}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}}}{\frac{\frac{3^{4}-27-64}{2^{8}}}{\frac{4\times 16\times 27\times 3^{-2}}{2^{6}\times 3^{-2}\times 3^{3}\times 2^{6}}}}
To multiply powers of the same base, add their exponents. Add 5 and 3 to get 8.
\frac{\frac{\frac{\left(3^{7}\times 0.3\right)^{-4}\times 2^{2}}{3^{4}\times 2^{-2}-4^{2}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}}}{\frac{\frac{3^{4}-27-64}{2^{8}}}{\frac{4\times 16\times 27\times 3^{-2}}{2^{12}\times 3^{-2}\times 3^{3}}}}
To multiply powers of the same base, add their exponents. Add 6 and 6 to get 12.
\frac{\frac{\frac{\left(3^{7}\times 0.3\right)^{-4}\times 2^{2}}{3^{4}\times 2^{-2}-4^{2}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}}}{\frac{\frac{3^{4}-27-64}{2^{8}}}{\frac{4\times 16\times 27\times 3^{-2}}{2^{12}\times 3^{1}}}}
To multiply powers of the same base, add their exponents. Add -2 and 3 to get 1.
\frac{\frac{\left(3^{7}\times 0.3\right)^{-4}\times 2^{2}}{3^{4}\times 2^{-2}-4^{2}}\times \frac{4\times 16\times 27\times 3^{-2}}{2^{12}\times 3^{1}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Divide \frac{\frac{\left(3^{7}\times 0.3\right)^{-4}\times 2^{2}}{3^{4}\times 2^{-2}-4^{2}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}} by \frac{\frac{3^{4}-27-64}{2^{8}}}{\frac{4\times 16\times 27\times 3^{-2}}{2^{12}\times 3^{1}}} by multiplying \frac{\frac{\left(3^{7}\times 0.3\right)^{-4}\times 2^{2}}{3^{4}\times 2^{-2}-4^{2}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}} by the reciprocal of \frac{\frac{3^{4}-27-64}{2^{8}}}{\frac{4\times 16\times 27\times 3^{-2}}{2^{12}\times 3^{1}}}.
\frac{\frac{\left(2187\times 0.3\right)^{-4}\times 2^{2}}{3^{4}\times 2^{-2}-4^{2}}\times \frac{4\times 16\times 27\times 3^{-2}}{2^{12}\times 3^{1}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Calculate 3 to the power of 7 and get 2187.
\frac{\frac{656.1^{-4}\times 2^{2}}{3^{4}\times 2^{-2}-4^{2}}\times \frac{4\times 16\times 27\times 3^{-2}}{2^{12}\times 3^{1}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Multiply 2187 and 0.3 to get 656.1.
\frac{\frac{\frac{10000}{1853020188851841}\times 2^{2}}{3^{4}\times 2^{-2}-4^{2}}\times \frac{4\times 16\times 27\times 3^{-2}}{2^{12}\times 3^{1}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Calculate 656.1 to the power of -4 and get \frac{10000}{1853020188851841}.
\frac{\frac{\frac{10000}{1853020188851841}\times 4}{3^{4}\times 2^{-2}-4^{2}}\times \frac{4\times 16\times 27\times 3^{-2}}{2^{12}\times 3^{1}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Calculate 2 to the power of 2 and get 4.
\frac{\frac{\frac{40000}{1853020188851841}}{3^{4}\times 2^{-2}-4^{2}}\times \frac{4\times 16\times 27\times 3^{-2}}{2^{12}\times 3^{1}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Multiply \frac{10000}{1853020188851841} and 4 to get \frac{40000}{1853020188851841}.
\frac{\frac{\frac{40000}{1853020188851841}}{81\times 2^{-2}-4^{2}}\times \frac{4\times 16\times 27\times 3^{-2}}{2^{12}\times 3^{1}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Calculate 3 to the power of 4 and get 81.
\frac{\frac{\frac{40000}{1853020188851841}}{81\times \frac{1}{4}-4^{2}}\times \frac{4\times 16\times 27\times 3^{-2}}{2^{12}\times 3^{1}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Calculate 2 to the power of -2 and get \frac{1}{4}.
\frac{\frac{\frac{40000}{1853020188851841}}{\frac{81}{4}-4^{2}}\times \frac{4\times 16\times 27\times 3^{-2}}{2^{12}\times 3^{1}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Multiply 81 and \frac{1}{4} to get \frac{81}{4}.
\frac{\frac{\frac{40000}{1853020188851841}}{\frac{81}{4}-16}\times \frac{4\times 16\times 27\times 3^{-2}}{2^{12}\times 3^{1}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Calculate 4 to the power of 2 and get 16.
\frac{\frac{\frac{40000}{1853020188851841}}{\frac{17}{4}}\times \frac{4\times 16\times 27\times 3^{-2}}{2^{12}\times 3^{1}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Subtract 16 from \frac{81}{4} to get \frac{17}{4}.
\frac{\frac{40000}{1853020188851841}\times \frac{4}{17}\times \frac{4\times 16\times 27\times 3^{-2}}{2^{12}\times 3^{1}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Divide \frac{40000}{1853020188851841} by \frac{17}{4} by multiplying \frac{40000}{1853020188851841} by the reciprocal of \frac{17}{4}.
\frac{\frac{160000}{31501343210481297}\times \frac{4\times 16\times 27\times 3^{-2}}{2^{12}\times 3^{1}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Multiply \frac{40000}{1853020188851841} and \frac{4}{17} to get \frac{160000}{31501343210481297}.
\frac{\frac{160000}{31501343210481297}\times \frac{4\times 9\times 16\times 3^{-2}}{2^{12}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Cancel out 3 in both numerator and denominator.
\frac{\frac{160000}{31501343210481297}\times \frac{36\times 16\times 3^{-2}}{2^{12}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Multiply 4 and 9 to get 36.
\frac{\frac{160000}{31501343210481297}\times \frac{576\times 3^{-2}}{2^{12}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Multiply 36 and 16 to get 576.
\frac{\frac{160000}{31501343210481297}\times \frac{576\times \frac{1}{9}}{2^{12}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{\frac{160000}{31501343210481297}\times \frac{64}{2^{12}}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Multiply 576 and \frac{1}{9} to get 64.
\frac{\frac{160000}{31501343210481297}\times \frac{64}{4096}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Calculate 2 to the power of 12 and get 4096.
\frac{\frac{160000}{31501343210481297}\times \frac{1}{64}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Reduce the fraction \frac{64}{4096} to lowest terms by extracting and canceling out 64.
\frac{\frac{2500}{31501343210481297}}{\frac{\frac{3}{4}\times \left(\frac{2}{3}\right)^{2}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Multiply \frac{160000}{31501343210481297} and \frac{1}{64} to get \frac{2500}{31501343210481297}.
\frac{\frac{2500}{31501343210481297}}{\frac{\frac{3}{4}\times \frac{4}{9}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{\frac{2500}{31501343210481297}}{\frac{\frac{1}{3}\times \frac{2}{6}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Multiply \frac{3}{4} and \frac{4}{9} to get \frac{1}{3}.
\frac{\frac{2500}{31501343210481297}}{\frac{\frac{1}{3}\times \frac{1}{3}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{\frac{2500}{31501343210481297}}{\frac{\frac{1}{9}}{\frac{3^{2}}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Multiply \frac{1}{3} and \frac{1}{3} to get \frac{1}{9}.
\frac{\frac{2500}{31501343210481297}}{\frac{\frac{1}{9}}{\frac{9}{4}\times 2^{2}\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Calculate 3 to the power of 2 and get 9.
\frac{\frac{2500}{31501343210481297}}{\frac{\frac{1}{9}}{\frac{9}{4}\times 4\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Calculate 2 to the power of 2 and get 4.
\frac{\frac{2500}{31501343210481297}}{\frac{\frac{1}{9}}{9\times \frac{2^{3}}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Multiply \frac{9}{4} and 4 to get 9.
\frac{\frac{2500}{31501343210481297}}{\frac{\frac{1}{9}}{9\times \frac{8}{3}}\times \frac{3^{4}-27-64}{2^{8}}}
Calculate 2 to the power of 3 and get 8.
\frac{\frac{2500}{31501343210481297}}{\frac{\frac{1}{9}}{24}\times \frac{3^{4}-27-64}{2^{8}}}
Multiply 9 and \frac{8}{3} to get 24.
\frac{\frac{2500}{31501343210481297}}{\frac{1}{9\times 24}\times \frac{3^{4}-27-64}{2^{8}}}
Express \frac{\frac{1}{9}}{24} as a single fraction.
\frac{\frac{2500}{31501343210481297}}{\frac{1}{216}\times \frac{3^{4}-27-64}{2^{8}}}
Multiply 9 and 24 to get 216.
\frac{\frac{2500}{31501343210481297}}{\frac{1}{216}\times \frac{81-27-64}{2^{8}}}
Calculate 3 to the power of 4 and get 81.
\frac{\frac{2500}{31501343210481297}}{\frac{1}{216}\times \frac{54-64}{2^{8}}}
Subtract 27 from 81 to get 54.
\frac{\frac{2500}{31501343210481297}}{\frac{1}{216}\times \frac{-10}{2^{8}}}
Subtract 64 from 54 to get -10.
\frac{\frac{2500}{31501343210481297}}{\frac{1}{216}\times \frac{-10}{256}}
Calculate 2 to the power of 8 and get 256.
\frac{\frac{2500}{31501343210481297}}{\frac{1}{216}\left(-\frac{5}{128}\right)}
Reduce the fraction \frac{-10}{256} to lowest terms by extracting and canceling out 2.
\frac{\frac{2500}{31501343210481297}}{-\frac{5}{27648}}
Multiply \frac{1}{216} and -\frac{5}{128} to get -\frac{5}{27648}.
\frac{2500}{31501343210481297}\left(-\frac{27648}{5}\right)
Divide \frac{2500}{31501343210481297} by -\frac{5}{27648} by multiplying \frac{2500}{31501343210481297} by the reciprocal of -\frac{5}{27648}.
-\frac{512000}{1166716415203011}
Multiply \frac{2500}{31501343210481297} and -\frac{27648}{5} to get -\frac{512000}{1166716415203011}.