Skip to main content
Evaluate
Tick mark Image

Share

\frac{\frac{\sqrt{3}}{2}}{\sqrt{1+\frac{\cot(60)}{0+\tan(30)}}-\sin(30)}
Get the value of \cos(30) from trigonometric values table.
\frac{\frac{\sqrt{3}}{2}}{\sqrt{1+\frac{\frac{\sqrt{3}}{3}}{0+\tan(30)}}-\sin(30)}
Get the value of \cot(60) from trigonometric values table.
\frac{\frac{\sqrt{3}}{2}}{\sqrt{1+\frac{\frac{\sqrt{3}}{3}}{0+\frac{\sqrt{3}}{3}}}-\sin(30)}
Get the value of \tan(30) from trigonometric values table.
\frac{\frac{\sqrt{3}}{2}}{\sqrt{1+\frac{\frac{\sqrt{3}}{3}}{\frac{\sqrt{3}}{3}}}-\sin(30)}
Anything plus zero gives itself.
\frac{\frac{\sqrt{3}}{2}}{\sqrt{1+\frac{\sqrt{3}\times 3}{3\sqrt{3}}}-\sin(30)}
Divide \frac{\sqrt{3}}{3} by \frac{\sqrt{3}}{3} by multiplying \frac{\sqrt{3}}{3} by the reciprocal of \frac{\sqrt{3}}{3}.
\frac{\frac{\sqrt{3}}{2}}{\sqrt{1+1}-\sin(30)}
Cancel out 3\sqrt{3} in both numerator and denominator.
\frac{\frac{\sqrt{3}}{2}}{\sqrt{2}-\sin(30)}
Add 1 and 1 to get 2.
\frac{\frac{\sqrt{3}}{2}}{\sqrt{2}-\frac{1}{2}}
Get the value of \sin(30) from trigonometric values table.
\frac{\sqrt{3}}{2\left(\sqrt{2}-\frac{1}{2}\right)}
Express \frac{\frac{\sqrt{3}}{2}}{\sqrt{2}-\frac{1}{2}} as a single fraction.
\frac{\sqrt{3}}{2\sqrt{2}-1}
Use the distributive property to multiply 2 by \sqrt{2}-\frac{1}{2}.
\frac{\sqrt{3}\left(2\sqrt{2}+1\right)}{\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)}
Rationalize the denominator of \frac{\sqrt{3}}{2\sqrt{2}-1} by multiplying numerator and denominator by 2\sqrt{2}+1.
\frac{\sqrt{3}\left(2\sqrt{2}+1\right)}{\left(2\sqrt{2}\right)^{2}-1^{2}}
Consider \left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(2\sqrt{2}+1\right)}{2^{2}\left(\sqrt{2}\right)^{2}-1^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
\frac{\sqrt{3}\left(2\sqrt{2}+1\right)}{4\left(\sqrt{2}\right)^{2}-1^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\sqrt{3}\left(2\sqrt{2}+1\right)}{4\times 2-1^{2}}
The square of \sqrt{2} is 2.
\frac{\sqrt{3}\left(2\sqrt{2}+1\right)}{8-1^{2}}
Multiply 4 and 2 to get 8.
\frac{\sqrt{3}\left(2\sqrt{2}+1\right)}{8-1}
Calculate 1 to the power of 2 and get 1.
\frac{\sqrt{3}\left(2\sqrt{2}+1\right)}{7}
Subtract 1 from 8 to get 7.
\frac{2\sqrt{3}\sqrt{2}+\sqrt{3}}{7}
Use the distributive property to multiply \sqrt{3} by 2\sqrt{2}+1.
\frac{2\sqrt{6}+\sqrt{3}}{7}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.