Evaluate
\frac{\sqrt{3}+2\sqrt{6}}{7}\approx 0.947290042
Share
Copied to clipboard
\frac{\frac{\sqrt{3}}{2}}{\sqrt{1+\frac{\cot(60)}{0+\tan(30)}}-\sin(30)}
Get the value of \cos(30) from trigonometric values table.
\frac{\frac{\sqrt{3}}{2}}{\sqrt{1+\frac{\frac{\sqrt{3}}{3}}{0+\tan(30)}}-\sin(30)}
Get the value of \cot(60) from trigonometric values table.
\frac{\frac{\sqrt{3}}{2}}{\sqrt{1+\frac{\frac{\sqrt{3}}{3}}{0+\frac{\sqrt{3}}{3}}}-\sin(30)}
Get the value of \tan(30) from trigonometric values table.
\frac{\frac{\sqrt{3}}{2}}{\sqrt{1+\frac{\frac{\sqrt{3}}{3}}{\frac{\sqrt{3}}{3}}}-\sin(30)}
Anything plus zero gives itself.
\frac{\frac{\sqrt{3}}{2}}{\sqrt{1+\frac{\sqrt{3}\times 3}{3\sqrt{3}}}-\sin(30)}
Divide \frac{\sqrt{3}}{3} by \frac{\sqrt{3}}{3} by multiplying \frac{\sqrt{3}}{3} by the reciprocal of \frac{\sqrt{3}}{3}.
\frac{\frac{\sqrt{3}}{2}}{\sqrt{1+1}-\sin(30)}
Cancel out 3\sqrt{3} in both numerator and denominator.
\frac{\frac{\sqrt{3}}{2}}{\sqrt{2}-\sin(30)}
Add 1 and 1 to get 2.
\frac{\frac{\sqrt{3}}{2}}{\sqrt{2}-\frac{1}{2}}
Get the value of \sin(30) from trigonometric values table.
\frac{\sqrt{3}}{2\left(\sqrt{2}-\frac{1}{2}\right)}
Express \frac{\frac{\sqrt{3}}{2}}{\sqrt{2}-\frac{1}{2}} as a single fraction.
\frac{\sqrt{3}}{2\sqrt{2}-1}
Use the distributive property to multiply 2 by \sqrt{2}-\frac{1}{2}.
\frac{\sqrt{3}\left(2\sqrt{2}+1\right)}{\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)}
Rationalize the denominator of \frac{\sqrt{3}}{2\sqrt{2}-1} by multiplying numerator and denominator by 2\sqrt{2}+1.
\frac{\sqrt{3}\left(2\sqrt{2}+1\right)}{\left(2\sqrt{2}\right)^{2}-1^{2}}
Consider \left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(2\sqrt{2}+1\right)}{2^{2}\left(\sqrt{2}\right)^{2}-1^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
\frac{\sqrt{3}\left(2\sqrt{2}+1\right)}{4\left(\sqrt{2}\right)^{2}-1^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\sqrt{3}\left(2\sqrt{2}+1\right)}{4\times 2-1^{2}}
The square of \sqrt{2} is 2.
\frac{\sqrt{3}\left(2\sqrt{2}+1\right)}{8-1^{2}}
Multiply 4 and 2 to get 8.
\frac{\sqrt{3}\left(2\sqrt{2}+1\right)}{8-1}
Calculate 1 to the power of 2 and get 1.
\frac{\sqrt{3}\left(2\sqrt{2}+1\right)}{7}
Subtract 1 from 8 to get 7.
\frac{2\sqrt{3}\sqrt{2}+\sqrt{3}}{7}
Use the distributive property to multiply \sqrt{3} by 2\sqrt{2}+1.
\frac{2\sqrt{6}+\sqrt{3}}{7}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}