Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

1n^{2}=11^{2}-107^{2}+96^{2}+59^{2}
Anything divided by one gives itself.
1n^{2}=121-107^{2}+96^{2}+59^{2}
Calculate 11 to the power of 2 and get 121.
1n^{2}=121-11449+96^{2}+59^{2}
Calculate 107 to the power of 2 and get 11449.
1n^{2}=-11328+96^{2}+59^{2}
Subtract 11449 from 121 to get -11328.
1n^{2}=-11328+9216+59^{2}
Calculate 96 to the power of 2 and get 9216.
1n^{2}=-2112+59^{2}
Add -11328 and 9216 to get -2112.
1n^{2}=-2112+3481
Calculate 59 to the power of 2 and get 3481.
1n^{2}=1369
Add -2112 and 3481 to get 1369.
1n^{2}-1369=0
Subtract 1369 from both sides.
n^{2}-1369=0
Reorder the terms.
\left(n-37\right)\left(n+37\right)=0
Consider n^{2}-1369. Rewrite n^{2}-1369 as n^{2}-37^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
n=37 n=-37
To find equation solutions, solve n-37=0 and n+37=0.
1n^{2}=11^{2}-107^{2}+96^{2}+59^{2}
Anything divided by one gives itself.
1n^{2}=121-107^{2}+96^{2}+59^{2}
Calculate 11 to the power of 2 and get 121.
1n^{2}=121-11449+96^{2}+59^{2}
Calculate 107 to the power of 2 and get 11449.
1n^{2}=-11328+96^{2}+59^{2}
Subtract 11449 from 121 to get -11328.
1n^{2}=-11328+9216+59^{2}
Calculate 96 to the power of 2 and get 9216.
1n^{2}=-2112+59^{2}
Add -11328 and 9216 to get -2112.
1n^{2}=-2112+3481
Calculate 59 to the power of 2 and get 3481.
1n^{2}=1369
Add -2112 and 3481 to get 1369.
n^{2}=1369
Divide both sides by 1.
n=37 n=-37
Take the square root of both sides of the equation.
1n^{2}=11^{2}-107^{2}+96^{2}+59^{2}
Anything divided by one gives itself.
1n^{2}=121-107^{2}+96^{2}+59^{2}
Calculate 11 to the power of 2 and get 121.
1n^{2}=121-11449+96^{2}+59^{2}
Calculate 107 to the power of 2 and get 11449.
1n^{2}=-11328+96^{2}+59^{2}
Subtract 11449 from 121 to get -11328.
1n^{2}=-11328+9216+59^{2}
Calculate 96 to the power of 2 and get 9216.
1n^{2}=-2112+59^{2}
Add -11328 and 9216 to get -2112.
1n^{2}=-2112+3481
Calculate 59 to the power of 2 and get 3481.
1n^{2}=1369
Add -2112 and 3481 to get 1369.
1n^{2}-1369=0
Subtract 1369 from both sides.
n^{2}-1369=0
Reorder the terms.
n=\frac{0±\sqrt{0^{2}-4\left(-1369\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -1369 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\left(-1369\right)}}{2}
Square 0.
n=\frac{0±\sqrt{5476}}{2}
Multiply -4 times -1369.
n=\frac{0±74}{2}
Take the square root of 5476.
n=37
Now solve the equation n=\frac{0±74}{2} when ± is plus. Divide 74 by 2.
n=-37
Now solve the equation n=\frac{0±74}{2} when ± is minus. Divide -74 by 2.
n=37 n=-37
The equation is now solved.