Solve for z_1
z_{1}=\left(\frac{11}{10}+\frac{3}{10}i\right)z_{2}
z_{2}\neq 0
Solve for z_2
z_{2}=\left(\frac{11}{13}-\frac{3}{13}i\right)z_{1}
z_{1}\neq 0
Share
Copied to clipboard
z_{1}=\left(2-3i\right)\left(\frac{3}{50}+\frac{1}{50}i\right)z_{2}\left(2+i\right)^{2}
Multiply both sides of the equation by z_{2}.
z_{1}=\left(\frac{9}{50}-\frac{7}{50}i\right)z_{2}\left(2+i\right)^{2}
Multiply 2-3i and \frac{3}{50}+\frac{1}{50}i to get \frac{9}{50}-\frac{7}{50}i.
z_{1}=\left(\frac{9}{50}-\frac{7}{50}i\right)z_{2}\left(3+4i\right)
Calculate 2+i to the power of 2 and get 3+4i.
z_{1}=\left(\frac{11}{10}+\frac{3}{10}i\right)z_{2}
Multiply \frac{9}{50}-\frac{7}{50}i and 3+4i to get \frac{11}{10}+\frac{3}{10}i.
z_{1}=\left(2-3i\right)\left(\frac{3}{50}+\frac{1}{50}i\right)z_{2}\left(2+i\right)^{2}
Variable z_{2} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by z_{2}.
z_{1}=\left(\frac{9}{50}-\frac{7}{50}i\right)z_{2}\left(2+i\right)^{2}
Multiply 2-3i and \frac{3}{50}+\frac{1}{50}i to get \frac{9}{50}-\frac{7}{50}i.
z_{1}=\left(\frac{9}{50}-\frac{7}{50}i\right)z_{2}\left(3+4i\right)
Calculate 2+i to the power of 2 and get 3+4i.
z_{1}=\left(\frac{11}{10}+\frac{3}{10}i\right)z_{2}
Multiply \frac{9}{50}-\frac{7}{50}i and 3+4i to get \frac{11}{10}+\frac{3}{10}i.
\left(\frac{11}{10}+\frac{3}{10}i\right)z_{2}=z_{1}
Swap sides so that all variable terms are on the left hand side.
\frac{\left(\frac{11}{10}+\frac{3}{10}i\right)z_{2}}{\frac{11}{10}+\frac{3}{10}i}=\frac{z_{1}}{\frac{11}{10}+\frac{3}{10}i}
Divide both sides by \frac{11}{10}+\frac{3}{10}i.
z_{2}=\frac{z_{1}}{\frac{11}{10}+\frac{3}{10}i}
Dividing by \frac{11}{10}+\frac{3}{10}i undoes the multiplication by \frac{11}{10}+\frac{3}{10}i.
z_{2}=\left(\frac{11}{13}-\frac{3}{13}i\right)z_{1}
Divide z_{1} by \frac{11}{10}+\frac{3}{10}i.
z_{2}=\left(\frac{11}{13}-\frac{3}{13}i\right)z_{1}\text{, }z_{2}\neq 0
Variable z_{2} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}