Skip to main content
Solve for z_1
Tick mark Image
Solve for z_2
Tick mark Image

Similar Problems from Web Search

Share

z_{1}=\left(2-3i\right)\left(\frac{3}{50}+\frac{1}{50}i\right)z_{2}\left(2+i\right)^{2}
Multiply both sides of the equation by z_{2}.
z_{1}=\left(\frac{9}{50}-\frac{7}{50}i\right)z_{2}\left(2+i\right)^{2}
Multiply 2-3i and \frac{3}{50}+\frac{1}{50}i to get \frac{9}{50}-\frac{7}{50}i.
z_{1}=\left(\frac{9}{50}-\frac{7}{50}i\right)z_{2}\left(3+4i\right)
Calculate 2+i to the power of 2 and get 3+4i.
z_{1}=\left(\frac{11}{10}+\frac{3}{10}i\right)z_{2}
Multiply \frac{9}{50}-\frac{7}{50}i and 3+4i to get \frac{11}{10}+\frac{3}{10}i.
z_{1}=\left(2-3i\right)\left(\frac{3}{50}+\frac{1}{50}i\right)z_{2}\left(2+i\right)^{2}
Variable z_{2} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by z_{2}.
z_{1}=\left(\frac{9}{50}-\frac{7}{50}i\right)z_{2}\left(2+i\right)^{2}
Multiply 2-3i and \frac{3}{50}+\frac{1}{50}i to get \frac{9}{50}-\frac{7}{50}i.
z_{1}=\left(\frac{9}{50}-\frac{7}{50}i\right)z_{2}\left(3+4i\right)
Calculate 2+i to the power of 2 and get 3+4i.
z_{1}=\left(\frac{11}{10}+\frac{3}{10}i\right)z_{2}
Multiply \frac{9}{50}-\frac{7}{50}i and 3+4i to get \frac{11}{10}+\frac{3}{10}i.
\left(\frac{11}{10}+\frac{3}{10}i\right)z_{2}=z_{1}
Swap sides so that all variable terms are on the left hand side.
\frac{\left(\frac{11}{10}+\frac{3}{10}i\right)z_{2}}{\frac{11}{10}+\frac{3}{10}i}=\frac{z_{1}}{\frac{11}{10}+\frac{3}{10}i}
Divide both sides by \frac{11}{10}+\frac{3}{10}i.
z_{2}=\frac{z_{1}}{\frac{11}{10}+\frac{3}{10}i}
Dividing by \frac{11}{10}+\frac{3}{10}i undoes the multiplication by \frac{11}{10}+\frac{3}{10}i.
z_{2}=\left(\frac{11}{13}-\frac{3}{13}i\right)z_{1}
Divide z_{1} by \frac{11}{10}+\frac{3}{10}i.
z_{2}=\left(\frac{11}{13}-\frac{3}{13}i\right)z_{1}\text{, }z_{2}\neq 0
Variable z_{2} cannot be equal to 0.