Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{z-13}{\left(z-3\right)\left(z+2\right)}-\frac{2}{3-z}
Factor z^{2}-z-6.
\frac{z-13}{\left(z-3\right)\left(z+2\right)}-\frac{2\left(-1\right)\left(z+2\right)}{\left(z-3\right)\left(z+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(z-3\right)\left(z+2\right) and 3-z is \left(z-3\right)\left(z+2\right). Multiply \frac{2}{3-z} times \frac{-\left(z+2\right)}{-\left(z+2\right)}.
\frac{z-13-2\left(-1\right)\left(z+2\right)}{\left(z-3\right)\left(z+2\right)}
Since \frac{z-13}{\left(z-3\right)\left(z+2\right)} and \frac{2\left(-1\right)\left(z+2\right)}{\left(z-3\right)\left(z+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{z-13+2z+4}{\left(z-3\right)\left(z+2\right)}
Do the multiplications in z-13-2\left(-1\right)\left(z+2\right).
\frac{3z-9}{\left(z-3\right)\left(z+2\right)}
Combine like terms in z-13+2z+4.
\frac{3\left(z-3\right)}{\left(z-3\right)\left(z+2\right)}
Factor the expressions that are not already factored in \frac{3z-9}{\left(z-3\right)\left(z+2\right)}.
\frac{3}{z+2}
Cancel out z-3 in both numerator and denominator.
\frac{z-13}{\left(z-3\right)\left(z+2\right)}-\frac{2}{3-z}
Factor z^{2}-z-6.
\frac{z-13}{\left(z-3\right)\left(z+2\right)}-\frac{2\left(-1\right)\left(z+2\right)}{\left(z-3\right)\left(z+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(z-3\right)\left(z+2\right) and 3-z is \left(z-3\right)\left(z+2\right). Multiply \frac{2}{3-z} times \frac{-\left(z+2\right)}{-\left(z+2\right)}.
\frac{z-13-2\left(-1\right)\left(z+2\right)}{\left(z-3\right)\left(z+2\right)}
Since \frac{z-13}{\left(z-3\right)\left(z+2\right)} and \frac{2\left(-1\right)\left(z+2\right)}{\left(z-3\right)\left(z+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{z-13+2z+4}{\left(z-3\right)\left(z+2\right)}
Do the multiplications in z-13-2\left(-1\right)\left(z+2\right).
\frac{3z-9}{\left(z-3\right)\left(z+2\right)}
Combine like terms in z-13+2z+4.
\frac{3\left(z-3\right)}{\left(z-3\right)\left(z+2\right)}
Factor the expressions that are not already factored in \frac{3z-9}{\left(z-3\right)\left(z+2\right)}.
\frac{3}{z+2}
Cancel out z-3 in both numerator and denominator.