Evaluate
\frac{3}{z+2}
Expand
\frac{3}{z+2}
Share
Copied to clipboard
\frac{z-13}{\left(z-3\right)\left(z+2\right)}-\frac{2}{3-z}
Factor z^{2}-z-6.
\frac{z-13}{\left(z-3\right)\left(z+2\right)}-\frac{2\left(-1\right)\left(z+2\right)}{\left(z-3\right)\left(z+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(z-3\right)\left(z+2\right) and 3-z is \left(z-3\right)\left(z+2\right). Multiply \frac{2}{3-z} times \frac{-\left(z+2\right)}{-\left(z+2\right)}.
\frac{z-13-2\left(-1\right)\left(z+2\right)}{\left(z-3\right)\left(z+2\right)}
Since \frac{z-13}{\left(z-3\right)\left(z+2\right)} and \frac{2\left(-1\right)\left(z+2\right)}{\left(z-3\right)\left(z+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{z-13+2z+4}{\left(z-3\right)\left(z+2\right)}
Do the multiplications in z-13-2\left(-1\right)\left(z+2\right).
\frac{3z-9}{\left(z-3\right)\left(z+2\right)}
Combine like terms in z-13+2z+4.
\frac{3\left(z-3\right)}{\left(z-3\right)\left(z+2\right)}
Factor the expressions that are not already factored in \frac{3z-9}{\left(z-3\right)\left(z+2\right)}.
\frac{3}{z+2}
Cancel out z-3 in both numerator and denominator.
\frac{z-13}{\left(z-3\right)\left(z+2\right)}-\frac{2}{3-z}
Factor z^{2}-z-6.
\frac{z-13}{\left(z-3\right)\left(z+2\right)}-\frac{2\left(-1\right)\left(z+2\right)}{\left(z-3\right)\left(z+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(z-3\right)\left(z+2\right) and 3-z is \left(z-3\right)\left(z+2\right). Multiply \frac{2}{3-z} times \frac{-\left(z+2\right)}{-\left(z+2\right)}.
\frac{z-13-2\left(-1\right)\left(z+2\right)}{\left(z-3\right)\left(z+2\right)}
Since \frac{z-13}{\left(z-3\right)\left(z+2\right)} and \frac{2\left(-1\right)\left(z+2\right)}{\left(z-3\right)\left(z+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{z-13+2z+4}{\left(z-3\right)\left(z+2\right)}
Do the multiplications in z-13-2\left(-1\right)\left(z+2\right).
\frac{3z-9}{\left(z-3\right)\left(z+2\right)}
Combine like terms in z-13+2z+4.
\frac{3\left(z-3\right)}{\left(z-3\right)\left(z+2\right)}
Factor the expressions that are not already factored in \frac{3z-9}{\left(z-3\right)\left(z+2\right)}.
\frac{3}{z+2}
Cancel out z-3 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}