Solve for z
z=\frac{1}{1-3y^{3}}
y\neq \frac{3^{\frac{2}{3}}}{3}
Solve for y
y=\frac{3^{\frac{2}{3}}\sqrt[3]{\frac{z-1}{z}}}{3}
z\neq 0
Share
Copied to clipboard
z-1=3y^{3}z
Variable z cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by z.
z-1-3y^{3}z=0
Subtract 3y^{3}z from both sides.
z-3y^{3}z=1
Add 1 to both sides. Anything plus zero gives itself.
\left(1-3y^{3}\right)z=1
Combine all terms containing z.
\frac{\left(1-3y^{3}\right)z}{1-3y^{3}}=\frac{1}{1-3y^{3}}
Divide both sides by 1-3y^{3}.
z=\frac{1}{1-3y^{3}}
Dividing by 1-3y^{3} undoes the multiplication by 1-3y^{3}.
z=\frac{1}{1-3y^{3}}\text{, }z\neq 0
Variable z cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}