Solve for z
z=6+2i
Share
Copied to clipboard
z=\left(-1-2i\right)\left(z-8\right)
Variable z cannot be equal to 8 since division by zero is not defined. Multiply both sides of the equation by z-8.
z=\left(-1-2i\right)z+\left(8+16i\right)
Use the distributive property to multiply -1-2i by z-8.
z-\left(-1-2i\right)z=8+16i
Subtract \left(-1-2i\right)z from both sides.
\left(2+2i\right)z=8+16i
Combine z and \left(1+2i\right)z to get \left(2+2i\right)z.
z=\frac{8+16i}{2+2i}
Divide both sides by 2+2i.
z=\frac{\left(8+16i\right)\left(2-2i\right)}{\left(2+2i\right)\left(2-2i\right)}
Multiply both numerator and denominator of \frac{8+16i}{2+2i} by the complex conjugate of the denominator, 2-2i.
z=\frac{48+16i}{8}
Do the multiplications in \frac{\left(8+16i\right)\left(2-2i\right)}{\left(2+2i\right)\left(2-2i\right)}.
z=6+2i
Divide 48+16i by 8 to get 6+2i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}