Solve for x
x=\frac{3z}{z-5}
z\neq 0\text{ and }z\neq 5
Solve for z
z=\frac{5x}{x-3}
x\neq 0\text{ and }x\neq 3
Share
Copied to clipboard
\left(x-3\right)z-x\times 5=0
Variable x cannot be equal to any of the values 0,3 since division by zero is not defined. Multiply both sides of the equation by x\left(x-3\right), the least common multiple of x,x-3.
xz-3z-x\times 5=0
Use the distributive property to multiply x-3 by z.
xz-x\times 5=3z
Add 3z to both sides. Anything plus zero gives itself.
xz-5x=3z
Multiply -1 and 5 to get -5.
\left(z-5\right)x=3z
Combine all terms containing x.
\frac{\left(z-5\right)x}{z-5}=\frac{3z}{z-5}
Divide both sides by z-5.
x=\frac{3z}{z-5}
Dividing by z-5 undoes the multiplication by z-5.
x=\frac{3z}{z-5}\text{, }x\neq 3\text{ and }x\neq 0
Variable x cannot be equal to any of the values 3,0.
\left(x-3\right)z-x\times 5=0
Multiply both sides of the equation by x\left(x-3\right), the least common multiple of x,x-3.
xz-3z-x\times 5=0
Use the distributive property to multiply x-3 by z.
xz-3z=x\times 5
Add x\times 5 to both sides. Anything plus zero gives itself.
\left(x-3\right)z=x\times 5
Combine all terms containing z.
\left(x-3\right)z=5x
The equation is in standard form.
\frac{\left(x-3\right)z}{x-3}=\frac{5x}{x-3}
Divide both sides by x-3.
z=\frac{5x}{x-3}
Dividing by x-3 undoes the multiplication by x-3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}