Solve for z
z=\frac{4\left(a^{4}+1\right)}{a^{2}}
a\neq 0
Solve for a
a=-\frac{\sqrt{2\left(\sqrt{z^{2}-64}+z\right)}}{4}
a=\frac{\sqrt{2\left(\sqrt{z^{2}-64}+z\right)}}{4}
a=\frac{\sqrt{2\left(-\sqrt{z^{2}-64}+z\right)}}{4}
a=-\frac{\sqrt{2\left(-\sqrt{z^{2}-64}+z\right)}}{4}\text{, }z\geq 8
Share
Copied to clipboard
\frac{z}{\frac{a^{2}a^{2}}{a^{2}}+\frac{1}{a^{2}}}=4
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2} times \frac{a^{2}}{a^{2}}.
\frac{z}{\frac{a^{2}a^{2}+1}{a^{2}}}=4
Since \frac{a^{2}a^{2}}{a^{2}} and \frac{1}{a^{2}} have the same denominator, add them by adding their numerators.
\frac{z}{\frac{a^{4}+1}{a^{2}}}=4
Do the multiplications in a^{2}a^{2}+1.
\frac{za^{2}}{a^{4}+1}=4
Divide z by \frac{a^{4}+1}{a^{2}} by multiplying z by the reciprocal of \frac{a^{4}+1}{a^{2}}.
za^{2}=4\left(a^{4}+1\right)
Multiply both sides of the equation by a^{4}+1.
za^{2}=4a^{4}+4
Use the distributive property to multiply 4 by a^{4}+1.
a^{2}z=4a^{4}+4
The equation is in standard form.
\frac{a^{2}z}{a^{2}}=\frac{4a^{4}+4}{a^{2}}
Divide both sides by a^{2}.
z=\frac{4a^{4}+4}{a^{2}}
Dividing by a^{2} undoes the multiplication by a^{2}.
z=\frac{4\left(a^{4}+1\right)}{a^{2}}
Divide 4a^{4}+4 by a^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}