Solve for x
x=\frac{30}{z}
z\neq 0
Solve for z
z=\frac{30}{x}
x\neq 0
Share
Copied to clipboard
6xz-30=5xz
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 30x, the least common multiple of 5,x,6.
6xz-30-5xz=0
Subtract 5xz from both sides.
xz-30=0
Combine 6xz and -5xz to get xz.
xz=30
Add 30 to both sides. Anything plus zero gives itself.
zx=30
The equation is in standard form.
\frac{zx}{z}=\frac{30}{z}
Divide both sides by z.
x=\frac{30}{z}
Dividing by z undoes the multiplication by z.
x=\frac{30}{z}\text{, }x\neq 0
Variable x cannot be equal to 0.
6xz-30=5xz
Multiply both sides of the equation by 30x, the least common multiple of 5,x,6.
6xz-30-5xz=0
Subtract 5xz from both sides.
xz-30=0
Combine 6xz and -5xz to get xz.
xz=30
Add 30 to both sides. Anything plus zero gives itself.
\frac{xz}{x}=\frac{30}{x}
Divide both sides by x.
z=\frac{30}{x}
Dividing by x undoes the multiplication by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}