Skip to main content
Solve for n
Tick mark Image
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z^{3}-5z^{2}=\left(z-5\right)\left(-19z-9n\right)
Multiply both sides of the equation by \left(z-5\right)\left(z+10\right), the least common multiple of z^{2}+5z-50,z+10.
z^{3}-5z^{2}=-19z^{2}-9zn+95z+45n
Use the distributive property to multiply z-5 by -19z-9n.
-19z^{2}-9zn+95z+45n=z^{3}-5z^{2}
Swap sides so that all variable terms are on the left hand side.
-9zn+95z+45n=z^{3}-5z^{2}+19z^{2}
Add 19z^{2} to both sides.
-9zn+95z+45n=z^{3}+14z^{2}
Combine -5z^{2} and 19z^{2} to get 14z^{2}.
-9zn+45n=z^{3}+14z^{2}-95z
Subtract 95z from both sides.
\left(-9z+45\right)n=z^{3}+14z^{2}-95z
Combine all terms containing n.
\left(45-9z\right)n=z^{3}+14z^{2}-95z
The equation is in standard form.
\frac{\left(45-9z\right)n}{45-9z}=\frac{z\left(z-5\right)\left(z+19\right)}{45-9z}
Divide both sides by -9z+45.
n=\frac{z\left(z-5\right)\left(z+19\right)}{45-9z}
Dividing by -9z+45 undoes the multiplication by -9z+45.
n=-\frac{z\left(z+19\right)}{9}
Divide z\left(-5+z\right)\left(19+z\right) by -9z+45.