Solve for n
n=-\frac{z\left(z+19\right)}{9}
z\neq 5\text{ and }z\neq -10
Solve for z
\left\{\begin{matrix}z=\frac{-\sqrt{361-36n}-19}{2}\text{, }&n\neq 10\text{ and }n\leq \frac{361}{36}\\z=\frac{\sqrt{361-36n}-19}{2}\text{, }&n\neq -\frac{40}{3}\text{ and }n\leq \frac{361}{36}\end{matrix}\right.
Share
Copied to clipboard
z^{3}-5z^{2}=\left(z-5\right)\left(-19z-9n\right)
Multiply both sides of the equation by \left(z-5\right)\left(z+10\right), the least common multiple of z^{2}+5z-50,z+10.
z^{3}-5z^{2}=-19z^{2}-9zn+95z+45n
Use the distributive property to multiply z-5 by -19z-9n.
-19z^{2}-9zn+95z+45n=z^{3}-5z^{2}
Swap sides so that all variable terms are on the left hand side.
-9zn+95z+45n=z^{3}-5z^{2}+19z^{2}
Add 19z^{2} to both sides.
-9zn+95z+45n=z^{3}+14z^{2}
Combine -5z^{2} and 19z^{2} to get 14z^{2}.
-9zn+45n=z^{3}+14z^{2}-95z
Subtract 95z from both sides.
\left(-9z+45\right)n=z^{3}+14z^{2}-95z
Combine all terms containing n.
\left(45-9z\right)n=z^{3}+14z^{2}-95z
The equation is in standard form.
\frac{\left(45-9z\right)n}{45-9z}=\frac{z\left(z-5\right)\left(z+19\right)}{45-9z}
Divide both sides by -9z+45.
n=\frac{z\left(z-5\right)\left(z+19\right)}{45-9z}
Dividing by -9z+45 undoes the multiplication by -9z+45.
n=-\frac{z\left(z+19\right)}{9}
Divide z\left(-5+z\right)\left(19+z\right) by -9z+45.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}