Solve for z
z=-3
Share
Copied to clipboard
z^{3}-2z^{2}=\left(z-2\right)\left(-12z-27\right)
Variable z cannot be equal to any of the values -9,2 since division by zero is not defined. Multiply both sides of the equation by \left(z-2\right)\left(z+9\right), the least common multiple of z^{2}+7z-18,z+9.
z^{3}-2z^{2}=-12z^{2}-3z+54
Use the distributive property to multiply z-2 by -12z-27 and combine like terms.
z^{3}-2z^{2}+12z^{2}=-3z+54
Add 12z^{2} to both sides.
z^{3}+10z^{2}=-3z+54
Combine -2z^{2} and 12z^{2} to get 10z^{2}.
z^{3}+10z^{2}+3z=54
Add 3z to both sides.
z^{3}+10z^{2}+3z-54=0
Subtract 54 from both sides.
±54,±27,±18,±9,±6,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -54 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
z=2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
z^{2}+12z+27=0
By Factor theorem, z-k is a factor of the polynomial for each root k. Divide z^{3}+10z^{2}+3z-54 by z-2 to get z^{2}+12z+27. Solve the equation where the result equals to 0.
z=\frac{-12±\sqrt{12^{2}-4\times 1\times 27}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 12 for b, and 27 for c in the quadratic formula.
z=\frac{-12±6}{2}
Do the calculations.
z=-9 z=-3
Solve the equation z^{2}+12z+27=0 when ± is plus and when ± is minus.
z=-3
Remove the values that the variable cannot be equal to.
z=2 z=-9 z=-3
List all found solutions.
z=-3
Variable z cannot be equal to any of the values 2,-9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}