Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(z^{2}-9z+20\right)\left(z+3\right)}{\left(z+3\right)\left(z^{2}+2z-35\right)}
Divide \frac{z^{2}-9z+20}{z+3} by \frac{z^{2}+2z-35}{z+3} by multiplying \frac{z^{2}-9z+20}{z+3} by the reciprocal of \frac{z^{2}+2z-35}{z+3}.
\frac{z^{2}-9z+20}{z^{2}+2z-35}
Cancel out z+3 in both numerator and denominator.
\frac{\left(z-5\right)\left(z-4\right)}{\left(z-5\right)\left(z+7\right)}
Factor the expressions that are not already factored.
\frac{z-4}{z+7}
Cancel out z-5 in both numerator and denominator.
\frac{\left(z^{2}-9z+20\right)\left(z+3\right)}{\left(z+3\right)\left(z^{2}+2z-35\right)}
Divide \frac{z^{2}-9z+20}{z+3} by \frac{z^{2}+2z-35}{z+3} by multiplying \frac{z^{2}-9z+20}{z+3} by the reciprocal of \frac{z^{2}+2z-35}{z+3}.
\frac{z^{2}-9z+20}{z^{2}+2z-35}
Cancel out z+3 in both numerator and denominator.
\frac{\left(z-5\right)\left(z-4\right)}{\left(z-5\right)\left(z+7\right)}
Factor the expressions that are not already factored.
\frac{z-4}{z+7}
Cancel out z-5 in both numerator and denominator.