Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{z^{2}-1}{\left(z-2\right)\left(z+2\right)}-\frac{z-1}{2\left(z+2\right)}
Factor z^{2}-4. Factor 2z+4.
\frac{2\left(z^{2}-1\right)}{2\left(z-2\right)\left(z+2\right)}-\frac{\left(z-1\right)\left(z-2\right)}{2\left(z-2\right)\left(z+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(z-2\right)\left(z+2\right) and 2\left(z+2\right) is 2\left(z-2\right)\left(z+2\right). Multiply \frac{z^{2}-1}{\left(z-2\right)\left(z+2\right)} times \frac{2}{2}. Multiply \frac{z-1}{2\left(z+2\right)} times \frac{z-2}{z-2}.
\frac{2\left(z^{2}-1\right)-\left(z-1\right)\left(z-2\right)}{2\left(z-2\right)\left(z+2\right)}
Since \frac{2\left(z^{2}-1\right)}{2\left(z-2\right)\left(z+2\right)} and \frac{\left(z-1\right)\left(z-2\right)}{2\left(z-2\right)\left(z+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2z^{2}-2-z^{2}+2z+z-2}{2\left(z-2\right)\left(z+2\right)}
Do the multiplications in 2\left(z^{2}-1\right)-\left(z-1\right)\left(z-2\right).
\frac{z^{2}-4+3z}{2\left(z-2\right)\left(z+2\right)}
Combine like terms in 2z^{2}-2-z^{2}+2z+z-2.
\frac{z^{2}-4+3z}{2z^{2}-8}
Expand 2\left(z-2\right)\left(z+2\right).
\frac{z^{2}-1}{\left(z-2\right)\left(z+2\right)}-\frac{z-1}{2\left(z+2\right)}
Factor z^{2}-4. Factor 2z+4.
\frac{2\left(z^{2}-1\right)}{2\left(z-2\right)\left(z+2\right)}-\frac{\left(z-1\right)\left(z-2\right)}{2\left(z-2\right)\left(z+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(z-2\right)\left(z+2\right) and 2\left(z+2\right) is 2\left(z-2\right)\left(z+2\right). Multiply \frac{z^{2}-1}{\left(z-2\right)\left(z+2\right)} times \frac{2}{2}. Multiply \frac{z-1}{2\left(z+2\right)} times \frac{z-2}{z-2}.
\frac{2\left(z^{2}-1\right)-\left(z-1\right)\left(z-2\right)}{2\left(z-2\right)\left(z+2\right)}
Since \frac{2\left(z^{2}-1\right)}{2\left(z-2\right)\left(z+2\right)} and \frac{\left(z-1\right)\left(z-2\right)}{2\left(z-2\right)\left(z+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2z^{2}-2-z^{2}+2z+z-2}{2\left(z-2\right)\left(z+2\right)}
Do the multiplications in 2\left(z^{2}-1\right)-\left(z-1\right)\left(z-2\right).
\frac{z^{2}-4+3z}{2\left(z-2\right)\left(z+2\right)}
Combine like terms in 2z^{2}-2-z^{2}+2z+z-2.
\frac{z^{2}-4+3z}{2z^{2}-8}
Expand 2\left(z-2\right)\left(z+2\right).