Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(z+2\right)\left(z+6\right)}{\left(z-2\right)\left(z+6\right)}-\frac{\left(z-5\right)\left(z-2\right)}{\left(z-2\right)\left(z+6\right)}-\frac{4}{z^{2}+4z-12}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of z-2 and z+6 is \left(z-2\right)\left(z+6\right). Multiply \frac{z+2}{z-2} times \frac{z+6}{z+6}. Multiply \frac{z-5}{z+6} times \frac{z-2}{z-2}.
\frac{\left(z+2\right)\left(z+6\right)-\left(z-5\right)\left(z-2\right)}{\left(z-2\right)\left(z+6\right)}-\frac{4}{z^{2}+4z-12}
Since \frac{\left(z+2\right)\left(z+6\right)}{\left(z-2\right)\left(z+6\right)} and \frac{\left(z-5\right)\left(z-2\right)}{\left(z-2\right)\left(z+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{z^{2}+6z+2z+12-z^{2}+2z+5z-10}{\left(z-2\right)\left(z+6\right)}-\frac{4}{z^{2}+4z-12}
Do the multiplications in \left(z+2\right)\left(z+6\right)-\left(z-5\right)\left(z-2\right).
\frac{15z+2}{\left(z-2\right)\left(z+6\right)}-\frac{4}{z^{2}+4z-12}
Combine like terms in z^{2}+6z+2z+12-z^{2}+2z+5z-10.
\frac{15z+2}{\left(z-2\right)\left(z+6\right)}-\frac{4}{\left(z-2\right)\left(z+6\right)}
Factor z^{2}+4z-12.
\frac{15z+2-4}{\left(z-2\right)\left(z+6\right)}
Since \frac{15z+2}{\left(z-2\right)\left(z+6\right)} and \frac{4}{\left(z-2\right)\left(z+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{15z-2}{\left(z-2\right)\left(z+6\right)}
Combine like terms in 15z+2-4.
\frac{15z-2}{z^{2}+4z-12}
Expand \left(z-2\right)\left(z+6\right).
\frac{\left(z+2\right)\left(z+6\right)}{\left(z-2\right)\left(z+6\right)}-\frac{\left(z-5\right)\left(z-2\right)}{\left(z-2\right)\left(z+6\right)}-\frac{4}{z^{2}+4z-12}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of z-2 and z+6 is \left(z-2\right)\left(z+6\right). Multiply \frac{z+2}{z-2} times \frac{z+6}{z+6}. Multiply \frac{z-5}{z+6} times \frac{z-2}{z-2}.
\frac{\left(z+2\right)\left(z+6\right)-\left(z-5\right)\left(z-2\right)}{\left(z-2\right)\left(z+6\right)}-\frac{4}{z^{2}+4z-12}
Since \frac{\left(z+2\right)\left(z+6\right)}{\left(z-2\right)\left(z+6\right)} and \frac{\left(z-5\right)\left(z-2\right)}{\left(z-2\right)\left(z+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{z^{2}+6z+2z+12-z^{2}+2z+5z-10}{\left(z-2\right)\left(z+6\right)}-\frac{4}{z^{2}+4z-12}
Do the multiplications in \left(z+2\right)\left(z+6\right)-\left(z-5\right)\left(z-2\right).
\frac{15z+2}{\left(z-2\right)\left(z+6\right)}-\frac{4}{z^{2}+4z-12}
Combine like terms in z^{2}+6z+2z+12-z^{2}+2z+5z-10.
\frac{15z+2}{\left(z-2\right)\left(z+6\right)}-\frac{4}{\left(z-2\right)\left(z+6\right)}
Factor z^{2}+4z-12.
\frac{15z+2-4}{\left(z-2\right)\left(z+6\right)}
Since \frac{15z+2}{\left(z-2\right)\left(z+6\right)} and \frac{4}{\left(z-2\right)\left(z+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{15z-2}{\left(z-2\right)\left(z+6\right)}
Combine like terms in 15z+2-4.
\frac{15z-2}{z^{2}+4z-12}
Expand \left(z-2\right)\left(z+6\right).