Evaluate
\frac{15z-2}{\left(z-2\right)\left(z+6\right)}
Expand
\frac{15z-2}{\left(z-2\right)\left(z+6\right)}
Share
Copied to clipboard
\frac{\left(z+2\right)\left(z+6\right)}{\left(z-2\right)\left(z+6\right)}-\frac{\left(z-5\right)\left(z-2\right)}{\left(z-2\right)\left(z+6\right)}-\frac{4}{z^{2}+4z-12}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of z-2 and z+6 is \left(z-2\right)\left(z+6\right). Multiply \frac{z+2}{z-2} times \frac{z+6}{z+6}. Multiply \frac{z-5}{z+6} times \frac{z-2}{z-2}.
\frac{\left(z+2\right)\left(z+6\right)-\left(z-5\right)\left(z-2\right)}{\left(z-2\right)\left(z+6\right)}-\frac{4}{z^{2}+4z-12}
Since \frac{\left(z+2\right)\left(z+6\right)}{\left(z-2\right)\left(z+6\right)} and \frac{\left(z-5\right)\left(z-2\right)}{\left(z-2\right)\left(z+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{z^{2}+6z+2z+12-z^{2}+2z+5z-10}{\left(z-2\right)\left(z+6\right)}-\frac{4}{z^{2}+4z-12}
Do the multiplications in \left(z+2\right)\left(z+6\right)-\left(z-5\right)\left(z-2\right).
\frac{15z+2}{\left(z-2\right)\left(z+6\right)}-\frac{4}{z^{2}+4z-12}
Combine like terms in z^{2}+6z+2z+12-z^{2}+2z+5z-10.
\frac{15z+2}{\left(z-2\right)\left(z+6\right)}-\frac{4}{\left(z-2\right)\left(z+6\right)}
Factor z^{2}+4z-12.
\frac{15z+2-4}{\left(z-2\right)\left(z+6\right)}
Since \frac{15z+2}{\left(z-2\right)\left(z+6\right)} and \frac{4}{\left(z-2\right)\left(z+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{15z-2}{\left(z-2\right)\left(z+6\right)}
Combine like terms in 15z+2-4.
\frac{15z-2}{z^{2}+4z-12}
Expand \left(z-2\right)\left(z+6\right).
\frac{\left(z+2\right)\left(z+6\right)}{\left(z-2\right)\left(z+6\right)}-\frac{\left(z-5\right)\left(z-2\right)}{\left(z-2\right)\left(z+6\right)}-\frac{4}{z^{2}+4z-12}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of z-2 and z+6 is \left(z-2\right)\left(z+6\right). Multiply \frac{z+2}{z-2} times \frac{z+6}{z+6}. Multiply \frac{z-5}{z+6} times \frac{z-2}{z-2}.
\frac{\left(z+2\right)\left(z+6\right)-\left(z-5\right)\left(z-2\right)}{\left(z-2\right)\left(z+6\right)}-\frac{4}{z^{2}+4z-12}
Since \frac{\left(z+2\right)\left(z+6\right)}{\left(z-2\right)\left(z+6\right)} and \frac{\left(z-5\right)\left(z-2\right)}{\left(z-2\right)\left(z+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{z^{2}+6z+2z+12-z^{2}+2z+5z-10}{\left(z-2\right)\left(z+6\right)}-\frac{4}{z^{2}+4z-12}
Do the multiplications in \left(z+2\right)\left(z+6\right)-\left(z-5\right)\left(z-2\right).
\frac{15z+2}{\left(z-2\right)\left(z+6\right)}-\frac{4}{z^{2}+4z-12}
Combine like terms in z^{2}+6z+2z+12-z^{2}+2z+5z-10.
\frac{15z+2}{\left(z-2\right)\left(z+6\right)}-\frac{4}{\left(z-2\right)\left(z+6\right)}
Factor z^{2}+4z-12.
\frac{15z+2-4}{\left(z-2\right)\left(z+6\right)}
Since \frac{15z+2}{\left(z-2\right)\left(z+6\right)} and \frac{4}{\left(z-2\right)\left(z+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{15z-2}{\left(z-2\right)\left(z+6\right)}
Combine like terms in 15z+2-4.
\frac{15z-2}{z^{2}+4z-12}
Expand \left(z-2\right)\left(z+6\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}