Evaluate
-\frac{\left(z+1\right)\left(z^{4}+z^{3}+z^{2}+z+1\right)}{z^{2}\left(z^{2}+z+1\right)}
Expand
-\frac{z^{5}+2z^{4}+2z^{3}+2z^{2}+2z+1}{z^{2}\left(z^{2}+z+1\right)}
Share
Copied to clipboard
\frac{z+1}{z^{2}+z+1}+\frac{\left(z-1\right)\left(z+1\right)\left(z^{2}+1\right)}{\left(-z+1\right)z^{2}}
Factor the expressions that are not already factored in \frac{z^{4}-1}{z^{2}-z^{3}}.
\frac{z+1}{z^{2}+z+1}+\frac{-\left(z+1\right)\left(-z+1\right)\left(z^{2}+1\right)}{\left(-z+1\right)z^{2}}
Extract the negative sign in -1+z.
\frac{z+1}{z^{2}+z+1}+\frac{-\left(z+1\right)\left(z^{2}+1\right)}{z^{2}}
Cancel out -z+1 in both numerator and denominator.
\frac{\left(z+1\right)z^{2}}{z^{2}\left(z^{2}+z+1\right)}+\frac{-\left(z+1\right)\left(z^{2}+1\right)\left(z^{2}+z+1\right)}{z^{2}\left(z^{2}+z+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of z^{2}+z+1 and z^{2} is z^{2}\left(z^{2}+z+1\right). Multiply \frac{z+1}{z^{2}+z+1} times \frac{z^{2}}{z^{2}}. Multiply \frac{-\left(z+1\right)\left(z^{2}+1\right)}{z^{2}} times \frac{z^{2}+z+1}{z^{2}+z+1}.
\frac{\left(z+1\right)z^{2}-\left(z+1\right)\left(z^{2}+1\right)\left(z^{2}+z+1\right)}{z^{2}\left(z^{2}+z+1\right)}
Since \frac{\left(z+1\right)z^{2}}{z^{2}\left(z^{2}+z+1\right)} and \frac{-\left(z+1\right)\left(z^{2}+1\right)\left(z^{2}+z+1\right)}{z^{2}\left(z^{2}+z+1\right)} have the same denominator, add them by adding their numerators.
\frac{z^{3}+z^{2}-z^{5}-z^{4}-2z^{3}-z^{2}-z-z^{4}-z^{3}-2z^{2}-z-1}{z^{2}\left(z^{2}+z+1\right)}
Do the multiplications in \left(z+1\right)z^{2}-\left(z+1\right)\left(z^{2}+1\right)\left(z^{2}+z+1\right).
\frac{-2z^{3}-2z^{2}-z^{5}-2z^{4}-2z-1}{z^{2}\left(z^{2}+z+1\right)}
Combine like terms in z^{3}+z^{2}-z^{5}-z^{4}-2z^{3}-z^{2}-z-z^{4}-z^{3}-2z^{2}-z-1.
\frac{-2z^{3}-2z^{2}-z^{5}-2z^{4}-2z-1}{z^{4}+z^{3}+z^{2}}
Expand z^{2}\left(z^{2}+z+1\right).
\frac{z+1}{z^{2}+z+1}+\frac{\left(z-1\right)\left(z+1\right)\left(z^{2}+1\right)}{\left(-z+1\right)z^{2}}
Factor the expressions that are not already factored in \frac{z^{4}-1}{z^{2}-z^{3}}.
\frac{z+1}{z^{2}+z+1}+\frac{-\left(z+1\right)\left(-z+1\right)\left(z^{2}+1\right)}{\left(-z+1\right)z^{2}}
Extract the negative sign in -1+z.
\frac{z+1}{z^{2}+z+1}+\frac{-\left(z+1\right)\left(z^{2}+1\right)}{z^{2}}
Cancel out -z+1 in both numerator and denominator.
\frac{\left(z+1\right)z^{2}}{z^{2}\left(z^{2}+z+1\right)}+\frac{-\left(z+1\right)\left(z^{2}+1\right)\left(z^{2}+z+1\right)}{z^{2}\left(z^{2}+z+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of z^{2}+z+1 and z^{2} is z^{2}\left(z^{2}+z+1\right). Multiply \frac{z+1}{z^{2}+z+1} times \frac{z^{2}}{z^{2}}. Multiply \frac{-\left(z+1\right)\left(z^{2}+1\right)}{z^{2}} times \frac{z^{2}+z+1}{z^{2}+z+1}.
\frac{\left(z+1\right)z^{2}-\left(z+1\right)\left(z^{2}+1\right)\left(z^{2}+z+1\right)}{z^{2}\left(z^{2}+z+1\right)}
Since \frac{\left(z+1\right)z^{2}}{z^{2}\left(z^{2}+z+1\right)} and \frac{-\left(z+1\right)\left(z^{2}+1\right)\left(z^{2}+z+1\right)}{z^{2}\left(z^{2}+z+1\right)} have the same denominator, add them by adding their numerators.
\frac{z^{3}+z^{2}-z^{5}-z^{4}-2z^{3}-z^{2}-z-z^{4}-z^{3}-2z^{2}-z-1}{z^{2}\left(z^{2}+z+1\right)}
Do the multiplications in \left(z+1\right)z^{2}-\left(z+1\right)\left(z^{2}+1\right)\left(z^{2}+z+1\right).
\frac{-2z^{3}-2z^{2}-z^{5}-2z^{4}-2z-1}{z^{2}\left(z^{2}+z+1\right)}
Combine like terms in z^{3}+z^{2}-z^{5}-z^{4}-2z^{3}-z^{2}-z-z^{4}-z^{3}-2z^{2}-z-1.
\frac{-2z^{3}-2z^{2}-z^{5}-2z^{4}-2z-1}{z^{4}+z^{3}+z^{2}}
Expand z^{2}\left(z^{2}+z+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}