Solve for c (complex solution)
\left\{\begin{matrix}c=-\frac{x\left(81-11x\right)}{2y\left(x+9\right)}\text{, }&x\neq -9\text{ and }y\neq 0\text{ and }x\neq 0\\c\in \mathrm{C}\text{, }&x=\frac{81}{11}\text{ and }y=0\end{matrix}\right.
Solve for c
\left\{\begin{matrix}c=-\frac{x\left(81-11x\right)}{2y\left(x+9\right)}\text{, }&x\neq -9\text{ and }y\neq 0\text{ and }x\neq 0\\c\in \mathrm{R}\text{, }&x=\frac{81}{11}\text{ and }y=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=\frac{\sqrt{1116cy+4\left(cy\right)^{2}+6561}}{22}+\frac{cy}{11}+\frac{81}{22}\text{, }&\text{unconditionally}\\x=-\frac{\sqrt{1116cy+4\left(cy\right)^{2}+6561}}{22}+\frac{cy}{11}+\frac{81}{22}\text{, }&y\neq 0\text{ and }c\neq 0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{1116cy+4\left(cy\right)^{2}+6561}+2cy+81}{22}\text{, }&y\leq -\frac{18\sqrt{55}|c|+\frac{279c}{2}}{c^{2}}\text{ or }y\geq \frac{18\sqrt{55}|c|-\frac{279c}{2}}{c^{2}}\text{ or }c=0\\x=\frac{-\sqrt{1116cy+4\left(cy\right)^{2}+6561}+2cy+81}{22}\text{, }&\left(y\geq \frac{18\sqrt{55}|c|-\frac{279c}{2}}{c^{2}}\text{ or }y\leq -\frac{18\sqrt{55}|c|+\frac{279c}{2}}{c^{2}}\right)\text{ and }y\neq 0\text{ and }c\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(2x+18\right)yc+2x\times 90=11x\left(x+9\right)
Multiply both sides of the equation by 2x\left(x+9\right), the least common multiple of x,x+9,2.
\left(2xy+18y\right)c+2x\times 90=11x\left(x+9\right)
Use the distributive property to multiply 2x+18 by y.
2xyc+18yc+2x\times 90=11x\left(x+9\right)
Use the distributive property to multiply 2xy+18y by c.
2xyc+18yc+180x=11x\left(x+9\right)
Multiply 2 and 90 to get 180.
2xyc+18yc+180x=11x^{2}+99x
Use the distributive property to multiply 11x by x+9.
2xyc+18yc=11x^{2}+99x-180x
Subtract 180x from both sides.
2xyc+18yc=11x^{2}-81x
Combine 99x and -180x to get -81x.
\left(2xy+18y\right)c=11x^{2}-81x
Combine all terms containing c.
\frac{\left(2xy+18y\right)c}{2xy+18y}=\frac{x\left(11x-81\right)}{2xy+18y}
Divide both sides by 18y+2yx.
c=\frac{x\left(11x-81\right)}{2xy+18y}
Dividing by 18y+2yx undoes the multiplication by 18y+2yx.
c=\frac{x\left(11x-81\right)}{2y\left(x+9\right)}
Divide x\left(-81+11x\right) by 18y+2yx.
\left(2x+18\right)yc+2x\times 90=11x\left(x+9\right)
Multiply both sides of the equation by 2x\left(x+9\right), the least common multiple of x,x+9,2.
\left(2xy+18y\right)c+2x\times 90=11x\left(x+9\right)
Use the distributive property to multiply 2x+18 by y.
2xyc+18yc+2x\times 90=11x\left(x+9\right)
Use the distributive property to multiply 2xy+18y by c.
2xyc+18yc+180x=11x\left(x+9\right)
Multiply 2 and 90 to get 180.
2xyc+18yc+180x=11x^{2}+99x
Use the distributive property to multiply 11x by x+9.
2xyc+18yc=11x^{2}+99x-180x
Subtract 180x from both sides.
2xyc+18yc=11x^{2}-81x
Combine 99x and -180x to get -81x.
\left(2xy+18y\right)c=11x^{2}-81x
Combine all terms containing c.
\frac{\left(2xy+18y\right)c}{2xy+18y}=\frac{x\left(11x-81\right)}{2xy+18y}
Divide both sides by 18y+2yx.
c=\frac{x\left(11x-81\right)}{2xy+18y}
Dividing by 18y+2yx undoes the multiplication by 18y+2yx.
c=\frac{x\left(11x-81\right)}{2y\left(x+9\right)}
Divide x\left(-81+11x\right) by 18y+2yx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}