Solve for x
x=-2-\frac{6}{y}
y\neq 0
Solve for y
y=-\frac{6}{x+2}
x\neq -2
Graph
Share
Copied to clipboard
2\left(y-xy\right)=3\left(4+2y\right)
Multiply both sides of the equation by 6, the least common multiple of 3,-2.
2y-2yx=3\left(4+2y\right)
Use the distributive property to multiply 2 by y-xy.
2y-2yx=12+6y
Use the distributive property to multiply 3 by 4+2y.
-2yx=12+6y-2y
Subtract 2y from both sides.
-2yx=12+4y
Combine 6y and -2y to get 4y.
\left(-2y\right)x=4y+12
The equation is in standard form.
\frac{\left(-2y\right)x}{-2y}=\frac{4y+12}{-2y}
Divide both sides by -2y.
x=\frac{4y+12}{-2y}
Dividing by -2y undoes the multiplication by -2y.
x=-2-\frac{6}{y}
Divide 12+4y by -2y.
2\left(y-xy\right)=3\left(4+2y\right)
Multiply both sides of the equation by 6, the least common multiple of 3,-2.
2y-2yx=3\left(4+2y\right)
Use the distributive property to multiply 2 by y-xy.
2y-2yx=12+6y
Use the distributive property to multiply 3 by 4+2y.
2y-2yx-6y=12
Subtract 6y from both sides.
-4y-2yx=12
Combine 2y and -6y to get -4y.
\left(-4-2x\right)y=12
Combine all terms containing y.
\left(-2x-4\right)y=12
The equation is in standard form.
\frac{\left(-2x-4\right)y}{-2x-4}=\frac{12}{-2x-4}
Divide both sides by -4-2x.
y=\frac{12}{-2x-4}
Dividing by -4-2x undoes the multiplication by -4-2x.
y=-\frac{6}{x+2}
Divide 12 by -4-2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}