Solve for p
p=x+y-2
Solve for x
x=2+p-y
Graph
Share
Copied to clipboard
\frac{y-p}{3}=\frac{x-2}{-1-2}
Subtract 0 from 3 to get 3.
\frac{y-p}{3}=\frac{x-2}{-3}
Subtract 2 from -1 to get -3.
\frac{y-p}{3}=\frac{-x+2}{3}
Multiply both numerator and denominator by -1.
\frac{1}{3}y-\frac{1}{3}p=\frac{-x+2}{3}
Divide each term of y-p by 3 to get \frac{1}{3}y-\frac{1}{3}p.
\frac{1}{3}y-\frac{1}{3}p=-\frac{1}{3}x+\frac{2}{3}
Divide each term of -x+2 by 3 to get -\frac{1}{3}x+\frac{2}{3}.
-\frac{1}{3}p=-\frac{1}{3}x+\frac{2}{3}-\frac{1}{3}y
Subtract \frac{1}{3}y from both sides.
-\frac{1}{3}p=\frac{2-y-x}{3}
The equation is in standard form.
\frac{-\frac{1}{3}p}{-\frac{1}{3}}=\frac{2-y-x}{-\frac{1}{3}\times 3}
Multiply both sides by -3.
p=\frac{2-y-x}{-\frac{1}{3}\times 3}
Dividing by -\frac{1}{3} undoes the multiplication by -\frac{1}{3}.
p=x+y-2
Divide \frac{-x+2-y}{3} by -\frac{1}{3} by multiplying \frac{-x+2-y}{3} by the reciprocal of -\frac{1}{3}.
\frac{y-p}{3}=\frac{x-2}{-1-2}
Subtract 0 from 3 to get 3.
\frac{y-p}{3}=\frac{x-2}{-3}
Subtract 2 from -1 to get -3.
\frac{y-p}{3}=\frac{-x+2}{3}
Multiply both numerator and denominator by -1.
\frac{1}{3}y-\frac{1}{3}p=\frac{-x+2}{3}
Divide each term of y-p by 3 to get \frac{1}{3}y-\frac{1}{3}p.
\frac{1}{3}y-\frac{1}{3}p=-\frac{1}{3}x+\frac{2}{3}
Divide each term of -x+2 by 3 to get -\frac{1}{3}x+\frac{2}{3}.
-\frac{1}{3}x+\frac{2}{3}=\frac{1}{3}y-\frac{1}{3}p
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{3}x=\frac{1}{3}y-\frac{1}{3}p-\frac{2}{3}
Subtract \frac{2}{3} from both sides.
-\frac{1}{3}x=\frac{y-p-2}{3}
The equation is in standard form.
\frac{-\frac{1}{3}x}{-\frac{1}{3}}=\frac{y-p-2}{-\frac{1}{3}\times 3}
Multiply both sides by -3.
x=\frac{y-p-2}{-\frac{1}{3}\times 3}
Dividing by -\frac{1}{3} undoes the multiplication by -\frac{1}{3}.
x=2+p-y
Divide \frac{-2+y-p}{3} by -\frac{1}{3} by multiplying \frac{-2+y-p}{3} by the reciprocal of -\frac{1}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}