Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{y-4}{\left(y-2\right)\left(y+2\right)}-\frac{6-y}{\left(y-2\right)\left(-y-2\right)}
Factor y^{2}-4. Factor 4-y^{2}.
\frac{y-4}{\left(y-2\right)\left(y+2\right)}-\frac{-\left(6-y\right)}{\left(y-2\right)\left(y+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(y-2\right)\left(y+2\right) and \left(y-2\right)\left(-y-2\right) is \left(y-2\right)\left(y+2\right). Multiply \frac{6-y}{\left(y-2\right)\left(-y-2\right)} times \frac{-1}{-1}.
\frac{y-4-\left(-\left(6-y\right)\right)}{\left(y-2\right)\left(y+2\right)}
Since \frac{y-4}{\left(y-2\right)\left(y+2\right)} and \frac{-\left(6-y\right)}{\left(y-2\right)\left(y+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{y-4+6-y}{\left(y-2\right)\left(y+2\right)}
Do the multiplications in y-4-\left(-\left(6-y\right)\right).
\frac{2}{\left(y-2\right)\left(y+2\right)}
Combine like terms in y-4+6-y.
\frac{2}{y^{2}-4}
Expand \left(y-2\right)\left(y+2\right).
\frac{y-4}{\left(y-2\right)\left(y+2\right)}-\frac{6-y}{\left(y-2\right)\left(-y-2\right)}
Factor y^{2}-4. Factor 4-y^{2}.
\frac{y-4}{\left(y-2\right)\left(y+2\right)}-\frac{-\left(6-y\right)}{\left(y-2\right)\left(y+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(y-2\right)\left(y+2\right) and \left(y-2\right)\left(-y-2\right) is \left(y-2\right)\left(y+2\right). Multiply \frac{6-y}{\left(y-2\right)\left(-y-2\right)} times \frac{-1}{-1}.
\frac{y-4-\left(-\left(6-y\right)\right)}{\left(y-2\right)\left(y+2\right)}
Since \frac{y-4}{\left(y-2\right)\left(y+2\right)} and \frac{-\left(6-y\right)}{\left(y-2\right)\left(y+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{y-4+6-y}{\left(y-2\right)\left(y+2\right)}
Do the multiplications in y-4-\left(-\left(6-y\right)\right).
\frac{2}{\left(y-2\right)\left(y+2\right)}
Combine like terms in y-4+6-y.
\frac{2}{y^{2}-4}
Expand \left(y-2\right)\left(y+2\right).