Evaluate
-\frac{3\left(5y^{2}+3y+5\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}
Expand
-\frac{3\left(5y^{2}+3y+5\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}
Graph
Share
Copied to clipboard
\frac{y-4}{\left(4y-1\right)\left(y+2\right)}-\frac{y+2}{\left(4y-1\right)\left(2y+3\right)}-\frac{4y+1}{2y^{2}+7y+6}
Factor 4y^{2}+7y-2. Factor 8y^{2}+10y-3.
\frac{\left(y-4\right)\left(2y+3\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{\left(y+2\right)\left(y+2\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{4y+1}{2y^{2}+7y+6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(4y-1\right)\left(y+2\right) and \left(4y-1\right)\left(2y+3\right) is \left(4y-1\right)\left(y+2\right)\left(2y+3\right). Multiply \frac{y-4}{\left(4y-1\right)\left(y+2\right)} times \frac{2y+3}{2y+3}. Multiply \frac{y+2}{\left(4y-1\right)\left(2y+3\right)} times \frac{y+2}{y+2}.
\frac{\left(y-4\right)\left(2y+3\right)-\left(y+2\right)\left(y+2\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{4y+1}{2y^{2}+7y+6}
Since \frac{\left(y-4\right)\left(2y+3\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)} and \frac{\left(y+2\right)\left(y+2\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2y^{2}+3y-8y-12-y^{2}-2y-2y-4}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{4y+1}{2y^{2}+7y+6}
Do the multiplications in \left(y-4\right)\left(2y+3\right)-\left(y+2\right)\left(y+2\right).
\frac{y^{2}-9y-16}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{4y+1}{2y^{2}+7y+6}
Combine like terms in 2y^{2}+3y-8y-12-y^{2}-2y-2y-4.
\frac{y^{2}-9y-16}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{4y+1}{\left(y+2\right)\left(2y+3\right)}
Factor 2y^{2}+7y+6.
\frac{y^{2}-9y-16}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{\left(4y+1\right)\left(4y-1\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(4y-1\right)\left(y+2\right)\left(2y+3\right) and \left(y+2\right)\left(2y+3\right) is \left(4y-1\right)\left(y+2\right)\left(2y+3\right). Multiply \frac{4y+1}{\left(y+2\right)\left(2y+3\right)} times \frac{4y-1}{4y-1}.
\frac{y^{2}-9y-16-\left(4y+1\right)\left(4y-1\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}
Since \frac{y^{2}-9y-16}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)} and \frac{\left(4y+1\right)\left(4y-1\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{2}-9y-16-16y^{2}+4y-4y+1}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}
Do the multiplications in y^{2}-9y-16-\left(4y+1\right)\left(4y-1\right).
\frac{-15y^{2}-9y-15}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}
Combine like terms in y^{2}-9y-16-16y^{2}+4y-4y+1.
\frac{-15y^{2}-9y-15}{8y^{3}+26y^{2}+17y-6}
Expand \left(4y-1\right)\left(y+2\right)\left(2y+3\right).
\frac{y-4}{\left(4y-1\right)\left(y+2\right)}-\frac{y+2}{\left(4y-1\right)\left(2y+3\right)}-\frac{4y+1}{2y^{2}+7y+6}
Factor 4y^{2}+7y-2. Factor 8y^{2}+10y-3.
\frac{\left(y-4\right)\left(2y+3\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{\left(y+2\right)\left(y+2\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{4y+1}{2y^{2}+7y+6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(4y-1\right)\left(y+2\right) and \left(4y-1\right)\left(2y+3\right) is \left(4y-1\right)\left(y+2\right)\left(2y+3\right). Multiply \frac{y-4}{\left(4y-1\right)\left(y+2\right)} times \frac{2y+3}{2y+3}. Multiply \frac{y+2}{\left(4y-1\right)\left(2y+3\right)} times \frac{y+2}{y+2}.
\frac{\left(y-4\right)\left(2y+3\right)-\left(y+2\right)\left(y+2\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{4y+1}{2y^{2}+7y+6}
Since \frac{\left(y-4\right)\left(2y+3\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)} and \frac{\left(y+2\right)\left(y+2\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2y^{2}+3y-8y-12-y^{2}-2y-2y-4}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{4y+1}{2y^{2}+7y+6}
Do the multiplications in \left(y-4\right)\left(2y+3\right)-\left(y+2\right)\left(y+2\right).
\frac{y^{2}-9y-16}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{4y+1}{2y^{2}+7y+6}
Combine like terms in 2y^{2}+3y-8y-12-y^{2}-2y-2y-4.
\frac{y^{2}-9y-16}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{4y+1}{\left(y+2\right)\left(2y+3\right)}
Factor 2y^{2}+7y+6.
\frac{y^{2}-9y-16}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{\left(4y+1\right)\left(4y-1\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(4y-1\right)\left(y+2\right)\left(2y+3\right) and \left(y+2\right)\left(2y+3\right) is \left(4y-1\right)\left(y+2\right)\left(2y+3\right). Multiply \frac{4y+1}{\left(y+2\right)\left(2y+3\right)} times \frac{4y-1}{4y-1}.
\frac{y^{2}-9y-16-\left(4y+1\right)\left(4y-1\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}
Since \frac{y^{2}-9y-16}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)} and \frac{\left(4y+1\right)\left(4y-1\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{2}-9y-16-16y^{2}+4y-4y+1}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}
Do the multiplications in y^{2}-9y-16-\left(4y+1\right)\left(4y-1\right).
\frac{-15y^{2}-9y-15}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}
Combine like terms in y^{2}-9y-16-16y^{2}+4y-4y+1.
\frac{-15y^{2}-9y-15}{8y^{3}+26y^{2}+17y-6}
Expand \left(4y-1\right)\left(y+2\right)\left(2y+3\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}