Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{y-4}{\left(4y-1\right)\left(y+2\right)}-\frac{y+2}{\left(4y-1\right)\left(2y+3\right)}-\frac{4y+1}{2y^{2}+7y+6}
Factor 4y^{2}+7y-2. Factor 8y^{2}+10y-3.
\frac{\left(y-4\right)\left(2y+3\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{\left(y+2\right)\left(y+2\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{4y+1}{2y^{2}+7y+6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(4y-1\right)\left(y+2\right) and \left(4y-1\right)\left(2y+3\right) is \left(4y-1\right)\left(y+2\right)\left(2y+3\right). Multiply \frac{y-4}{\left(4y-1\right)\left(y+2\right)} times \frac{2y+3}{2y+3}. Multiply \frac{y+2}{\left(4y-1\right)\left(2y+3\right)} times \frac{y+2}{y+2}.
\frac{\left(y-4\right)\left(2y+3\right)-\left(y+2\right)\left(y+2\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{4y+1}{2y^{2}+7y+6}
Since \frac{\left(y-4\right)\left(2y+3\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)} and \frac{\left(y+2\right)\left(y+2\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2y^{2}+3y-8y-12-y^{2}-2y-2y-4}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{4y+1}{2y^{2}+7y+6}
Do the multiplications in \left(y-4\right)\left(2y+3\right)-\left(y+2\right)\left(y+2\right).
\frac{y^{2}-9y-16}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{4y+1}{2y^{2}+7y+6}
Combine like terms in 2y^{2}+3y-8y-12-y^{2}-2y-2y-4.
\frac{y^{2}-9y-16}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{4y+1}{\left(y+2\right)\left(2y+3\right)}
Factor 2y^{2}+7y+6.
\frac{y^{2}-9y-16}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{\left(4y+1\right)\left(4y-1\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(4y-1\right)\left(y+2\right)\left(2y+3\right) and \left(y+2\right)\left(2y+3\right) is \left(4y-1\right)\left(y+2\right)\left(2y+3\right). Multiply \frac{4y+1}{\left(y+2\right)\left(2y+3\right)} times \frac{4y-1}{4y-1}.
\frac{y^{2}-9y-16-\left(4y+1\right)\left(4y-1\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}
Since \frac{y^{2}-9y-16}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)} and \frac{\left(4y+1\right)\left(4y-1\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{2}-9y-16-16y^{2}+4y-4y+1}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}
Do the multiplications in y^{2}-9y-16-\left(4y+1\right)\left(4y-1\right).
\frac{-15y^{2}-9y-15}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}
Combine like terms in y^{2}-9y-16-16y^{2}+4y-4y+1.
\frac{-15y^{2}-9y-15}{8y^{3}+26y^{2}+17y-6}
Expand \left(4y-1\right)\left(y+2\right)\left(2y+3\right).
\frac{y-4}{\left(4y-1\right)\left(y+2\right)}-\frac{y+2}{\left(4y-1\right)\left(2y+3\right)}-\frac{4y+1}{2y^{2}+7y+6}
Factor 4y^{2}+7y-2. Factor 8y^{2}+10y-3.
\frac{\left(y-4\right)\left(2y+3\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{\left(y+2\right)\left(y+2\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{4y+1}{2y^{2}+7y+6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(4y-1\right)\left(y+2\right) and \left(4y-1\right)\left(2y+3\right) is \left(4y-1\right)\left(y+2\right)\left(2y+3\right). Multiply \frac{y-4}{\left(4y-1\right)\left(y+2\right)} times \frac{2y+3}{2y+3}. Multiply \frac{y+2}{\left(4y-1\right)\left(2y+3\right)} times \frac{y+2}{y+2}.
\frac{\left(y-4\right)\left(2y+3\right)-\left(y+2\right)\left(y+2\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{4y+1}{2y^{2}+7y+6}
Since \frac{\left(y-4\right)\left(2y+3\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)} and \frac{\left(y+2\right)\left(y+2\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2y^{2}+3y-8y-12-y^{2}-2y-2y-4}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{4y+1}{2y^{2}+7y+6}
Do the multiplications in \left(y-4\right)\left(2y+3\right)-\left(y+2\right)\left(y+2\right).
\frac{y^{2}-9y-16}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{4y+1}{2y^{2}+7y+6}
Combine like terms in 2y^{2}+3y-8y-12-y^{2}-2y-2y-4.
\frac{y^{2}-9y-16}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{4y+1}{\left(y+2\right)\left(2y+3\right)}
Factor 2y^{2}+7y+6.
\frac{y^{2}-9y-16}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}-\frac{\left(4y+1\right)\left(4y-1\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(4y-1\right)\left(y+2\right)\left(2y+3\right) and \left(y+2\right)\left(2y+3\right) is \left(4y-1\right)\left(y+2\right)\left(2y+3\right). Multiply \frac{4y+1}{\left(y+2\right)\left(2y+3\right)} times \frac{4y-1}{4y-1}.
\frac{y^{2}-9y-16-\left(4y+1\right)\left(4y-1\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}
Since \frac{y^{2}-9y-16}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)} and \frac{\left(4y+1\right)\left(4y-1\right)}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{2}-9y-16-16y^{2}+4y-4y+1}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}
Do the multiplications in y^{2}-9y-16-\left(4y+1\right)\left(4y-1\right).
\frac{-15y^{2}-9y-15}{\left(4y-1\right)\left(y+2\right)\left(2y+3\right)}
Combine like terms in y^{2}-9y-16-16y^{2}+4y-4y+1.
\frac{-15y^{2}-9y-15}{8y^{3}+26y^{2}+17y-6}
Expand \left(4y-1\right)\left(y+2\right)\left(2y+3\right).