Solve for x
x=\frac{y-1}{2}
Solve for y
y=2x+1
Graph
Share
Copied to clipboard
\frac{y-3}{2}=\frac{x-1}{2-1}
Subtract 3 from 5 to get 2.
\frac{y-3}{2}=\frac{x-1}{1}
Subtract 1 from 2 to get 1.
\frac{y-3}{2}=x-1
Anything divided by one gives itself.
\frac{1}{2}y-\frac{3}{2}=x-1
Divide each term of y-3 by 2 to get \frac{1}{2}y-\frac{3}{2}.
x-1=\frac{1}{2}y-\frac{3}{2}
Swap sides so that all variable terms are on the left hand side.
x=\frac{1}{2}y-\frac{3}{2}+1
Add 1 to both sides.
x=\frac{1}{2}y-\frac{1}{2}
Add -\frac{3}{2} and 1 to get -\frac{1}{2}.
\frac{y-3}{2}=\frac{x-1}{2-1}
Subtract 3 from 5 to get 2.
\frac{y-3}{2}=\frac{x-1}{1}
Subtract 1 from 2 to get 1.
\frac{y-3}{2}=x-1
Anything divided by one gives itself.
\frac{1}{2}y-\frac{3}{2}=x-1
Divide each term of y-3 by 2 to get \frac{1}{2}y-\frac{3}{2}.
\frac{1}{2}y=x-1+\frac{3}{2}
Add \frac{3}{2} to both sides.
\frac{1}{2}y=x+\frac{1}{2}
Add -1 and \frac{3}{2} to get \frac{1}{2}.
\frac{\frac{1}{2}y}{\frac{1}{2}}=\frac{x+\frac{1}{2}}{\frac{1}{2}}
Multiply both sides by 2.
y=\frac{x+\frac{1}{2}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
y=2x+1
Divide x+\frac{1}{2} by \frac{1}{2} by multiplying x+\frac{1}{2} by the reciprocal of \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}