Solve for y
y = \frac{20 {(100000 \cdot 10 ^ {0.3} + 1)}}{10000 \cdot 10 ^ {0.3} - 1} \approx 200.011026672
Graph
Share
Copied to clipboard
y-200=\left(y+20\right)\times 10^{-4.3}
Variable y cannot be equal to -20 since division by zero is not defined. Multiply both sides of the equation by y+20.
y-200=y\times 10^{-4.3}+20\times 10^{-4.3}
Use the distributive property to multiply y+20 by 10^{-4.3}.
y-200-y\times 10^{-4.3}=20\times 10^{-4.3}
Subtract y\times 10^{-4.3} from both sides.
y-y\times 10^{-4.3}=20\times 10^{-4.3}+200
Add 200 to both sides.
\left(1-10^{-4.3}\right)y=20\times 10^{-4.3}+200
Combine all terms containing y.
\left(-\frac{10^{0.7}}{100000}+1\right)y=\frac{10^{0.7}}{5000}+200
The equation is in standard form.
\frac{\left(-\frac{10^{0.7}}{100000}+1\right)y}{-\frac{10^{0.7}}{100000}+1}=\frac{\frac{10^{0.7}}{5000}+200}{-\frac{10^{0.7}}{100000}+1}
Divide both sides by 1-\frac{1}{100000}\times 10^{0.7}.
y=\frac{\frac{10^{0.7}}{5000}+200}{-\frac{10^{0.7}}{100000}+1}
Dividing by 1-\frac{1}{100000}\times 10^{0.7} undoes the multiplication by 1-\frac{1}{100000}\times 10^{0.7}.
y=-\frac{2\left(10^{0.7}+100000\right)\left(10^{0.7}+1000000\right)}{10^{0.4}-1000000000}
Divide \frac{10^{0.7}}{5000}+200 by 1-\frac{1}{100000}\times 10^{0.7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}