Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{\left(y-1\right)\left(y+3\right)}{y+3}-\frac{5}{y+3}}{y+5\times \frac{-35}{y+3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y-1 times \frac{y+3}{y+3}.
\frac{\frac{\left(y-1\right)\left(y+3\right)-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Since \frac{\left(y-1\right)\left(y+3\right)}{y+3} and \frac{5}{y+3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}+3y-y-3-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Do the multiplications in \left(y-1\right)\left(y+3\right)-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+5\times \frac{-35}{y+3}}
Combine like terms in y^{2}+3y-y-3-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+\frac{5\left(-35\right)}{y+3}}
Express 5\times \frac{-35}{y+3} as a single fraction.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)}{y+3}+\frac{5\left(-35\right)}{y+3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y+3}{y+3}.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)+5\left(-35\right)}{y+3}}
Since \frac{y\left(y+3\right)}{y+3} and \frac{5\left(-35\right)}{y+3} have the same denominator, add them by adding their numerators.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y^{2}+3y-175}{y+3}}
Do the multiplications in y\left(y+3\right)+5\left(-35\right).
\frac{\left(y^{2}+2y-8\right)\left(y+3\right)}{\left(y+3\right)\left(y^{2}+3y-175\right)}
Divide \frac{y^{2}+2y-8}{y+3} by \frac{y^{2}+3y-175}{y+3} by multiplying \frac{y^{2}+2y-8}{y+3} by the reciprocal of \frac{y^{2}+3y-175}{y+3}.
\frac{y^{2}+2y-8}{y^{2}+3y-175}
Cancel out y+3 in both numerator and denominator.
\frac{\frac{\left(y-1\right)\left(y+3\right)}{y+3}-\frac{5}{y+3}}{y+5\times \frac{-35}{y+3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y-1 times \frac{y+3}{y+3}.
\frac{\frac{\left(y-1\right)\left(y+3\right)-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Since \frac{\left(y-1\right)\left(y+3\right)}{y+3} and \frac{5}{y+3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}+3y-y-3-5}{y+3}}{y+5\times \frac{-35}{y+3}}
Do the multiplications in \left(y-1\right)\left(y+3\right)-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+5\times \frac{-35}{y+3}}
Combine like terms in y^{2}+3y-y-3-5.
\frac{\frac{y^{2}+2y-8}{y+3}}{y+\frac{5\left(-35\right)}{y+3}}
Express 5\times \frac{-35}{y+3} as a single fraction.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)}{y+3}+\frac{5\left(-35\right)}{y+3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y+3}{y+3}.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y\left(y+3\right)+5\left(-35\right)}{y+3}}
Since \frac{y\left(y+3\right)}{y+3} and \frac{5\left(-35\right)}{y+3} have the same denominator, add them by adding their numerators.
\frac{\frac{y^{2}+2y-8}{y+3}}{\frac{y^{2}+3y-175}{y+3}}
Do the multiplications in y\left(y+3\right)+5\left(-35\right).
\frac{\left(y^{2}+2y-8\right)\left(y+3\right)}{\left(y+3\right)\left(y^{2}+3y-175\right)}
Divide \frac{y^{2}+2y-8}{y+3} by \frac{y^{2}+3y-175}{y+3} by multiplying \frac{y^{2}+2y-8}{y+3} by the reciprocal of \frac{y^{2}+3y-175}{y+3}.
\frac{y^{2}+2y-8}{y^{2}+3y-175}
Cancel out y+3 in both numerator and denominator.