Solve for y
y=\frac{\sqrt{159}}{3}+4\approx 8.203173404
y=-\frac{\sqrt{159}}{3}+4\approx -0.203173404
Graph
Share
Copied to clipboard
5\left(y-1\right)+y\left(3y+1\right)=30y
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5y, the least common multiple of y,5.
5y-5+y\left(3y+1\right)=30y
Use the distributive property to multiply 5 by y-1.
5y-5+3y^{2}+y=30y
Use the distributive property to multiply y by 3y+1.
6y-5+3y^{2}=30y
Combine 5y and y to get 6y.
6y-5+3y^{2}-30y=0
Subtract 30y from both sides.
-24y-5+3y^{2}=0
Combine 6y and -30y to get -24y.
3y^{2}-24y-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 3\left(-5\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -24 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-24\right)±\sqrt{576-4\times 3\left(-5\right)}}{2\times 3}
Square -24.
y=\frac{-\left(-24\right)±\sqrt{576-12\left(-5\right)}}{2\times 3}
Multiply -4 times 3.
y=\frac{-\left(-24\right)±\sqrt{576+60}}{2\times 3}
Multiply -12 times -5.
y=\frac{-\left(-24\right)±\sqrt{636}}{2\times 3}
Add 576 to 60.
y=\frac{-\left(-24\right)±2\sqrt{159}}{2\times 3}
Take the square root of 636.
y=\frac{24±2\sqrt{159}}{2\times 3}
The opposite of -24 is 24.
y=\frac{24±2\sqrt{159}}{6}
Multiply 2 times 3.
y=\frac{2\sqrt{159}+24}{6}
Now solve the equation y=\frac{24±2\sqrt{159}}{6} when ± is plus. Add 24 to 2\sqrt{159}.
y=\frac{\sqrt{159}}{3}+4
Divide 24+2\sqrt{159} by 6.
y=\frac{24-2\sqrt{159}}{6}
Now solve the equation y=\frac{24±2\sqrt{159}}{6} when ± is minus. Subtract 2\sqrt{159} from 24.
y=-\frac{\sqrt{159}}{3}+4
Divide 24-2\sqrt{159} by 6.
y=\frac{\sqrt{159}}{3}+4 y=-\frac{\sqrt{159}}{3}+4
The equation is now solved.
5\left(y-1\right)+y\left(3y+1\right)=30y
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5y, the least common multiple of y,5.
5y-5+y\left(3y+1\right)=30y
Use the distributive property to multiply 5 by y-1.
5y-5+3y^{2}+y=30y
Use the distributive property to multiply y by 3y+1.
6y-5+3y^{2}=30y
Combine 5y and y to get 6y.
6y-5+3y^{2}-30y=0
Subtract 30y from both sides.
-24y-5+3y^{2}=0
Combine 6y and -30y to get -24y.
-24y+3y^{2}=5
Add 5 to both sides. Anything plus zero gives itself.
3y^{2}-24y=5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3y^{2}-24y}{3}=\frac{5}{3}
Divide both sides by 3.
y^{2}+\left(-\frac{24}{3}\right)y=\frac{5}{3}
Dividing by 3 undoes the multiplication by 3.
y^{2}-8y=\frac{5}{3}
Divide -24 by 3.
y^{2}-8y+\left(-4\right)^{2}=\frac{5}{3}+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-8y+16=\frac{5}{3}+16
Square -4.
y^{2}-8y+16=\frac{53}{3}
Add \frac{5}{3} to 16.
\left(y-4\right)^{2}=\frac{53}{3}
Factor y^{2}-8y+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-4\right)^{2}}=\sqrt{\frac{53}{3}}
Take the square root of both sides of the equation.
y-4=\frac{\sqrt{159}}{3} y-4=-\frac{\sqrt{159}}{3}
Simplify.
y=\frac{\sqrt{159}}{3}+4 y=-\frac{\sqrt{159}}{3}+4
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}