Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{y-1}{\left(y-5\right)\left(2y+3\right)}+\frac{3}{\left(y-5\right)^{2}}
Factor 2y^{2}-7y-15. Factor y^{2}-10y+25.
\frac{\left(y-1\right)\left(y-5\right)}{\left(2y+3\right)\left(y-5\right)^{2}}+\frac{3\left(2y+3\right)}{\left(2y+3\right)\left(y-5\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(y-5\right)\left(2y+3\right) and \left(y-5\right)^{2} is \left(2y+3\right)\left(y-5\right)^{2}. Multiply \frac{y-1}{\left(y-5\right)\left(2y+3\right)} times \frac{y-5}{y-5}. Multiply \frac{3}{\left(y-5\right)^{2}} times \frac{2y+3}{2y+3}.
\frac{\left(y-1\right)\left(y-5\right)+3\left(2y+3\right)}{\left(2y+3\right)\left(y-5\right)^{2}}
Since \frac{\left(y-1\right)\left(y-5\right)}{\left(2y+3\right)\left(y-5\right)^{2}} and \frac{3\left(2y+3\right)}{\left(2y+3\right)\left(y-5\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{y^{2}-5y-y+5+6y+9}{\left(2y+3\right)\left(y-5\right)^{2}}
Do the multiplications in \left(y-1\right)\left(y-5\right)+3\left(2y+3\right).
\frac{y^{2}+14}{\left(2y+3\right)\left(y-5\right)^{2}}
Combine like terms in y^{2}-5y-y+5+6y+9.
\frac{y^{2}+14}{2y^{3}-17y^{2}+20y+75}
Expand \left(2y+3\right)\left(y-5\right)^{2}.
\frac{y-1}{\left(y-5\right)\left(2y+3\right)}+\frac{3}{\left(y-5\right)^{2}}
Factor 2y^{2}-7y-15. Factor y^{2}-10y+25.
\frac{\left(y-1\right)\left(y-5\right)}{\left(2y+3\right)\left(y-5\right)^{2}}+\frac{3\left(2y+3\right)}{\left(2y+3\right)\left(y-5\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(y-5\right)\left(2y+3\right) and \left(y-5\right)^{2} is \left(2y+3\right)\left(y-5\right)^{2}. Multiply \frac{y-1}{\left(y-5\right)\left(2y+3\right)} times \frac{y-5}{y-5}. Multiply \frac{3}{\left(y-5\right)^{2}} times \frac{2y+3}{2y+3}.
\frac{\left(y-1\right)\left(y-5\right)+3\left(2y+3\right)}{\left(2y+3\right)\left(y-5\right)^{2}}
Since \frac{\left(y-1\right)\left(y-5\right)}{\left(2y+3\right)\left(y-5\right)^{2}} and \frac{3\left(2y+3\right)}{\left(2y+3\right)\left(y-5\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{y^{2}-5y-y+5+6y+9}{\left(2y+3\right)\left(y-5\right)^{2}}
Do the multiplications in \left(y-1\right)\left(y-5\right)+3\left(2y+3\right).
\frac{y^{2}+14}{\left(2y+3\right)\left(y-5\right)^{2}}
Combine like terms in y^{2}-5y-y+5+6y+9.
\frac{y^{2}+14}{2y^{3}-17y^{2}+20y+75}
Expand \left(2y+3\right)\left(y-5\right)^{2}.