Solve for x
x=\frac{8y}{3}+7
Solve for y
y=\frac{3\left(x-7\right)}{8}
Graph
Share
Copied to clipboard
\frac{y-0}{-3}=\frac{x-7}{-1-7}
Subtract 0 from -3 to get -3.
\frac{y-0}{-3}=\frac{x-7}{-8}
Subtract 7 from -1 to get -8.
\frac{y-0}{-3}=\frac{-x+7}{8}
Multiply both numerator and denominator by -1.
-\frac{1}{3}y-0=\frac{-x+7}{8}
Divide each term of y-0 by -3 to get -\frac{1}{3}y-0.
-\frac{1}{3}y-0=-\frac{1}{8}x+\frac{7}{8}
Divide each term of -x+7 by 8 to get -\frac{1}{8}x+\frac{7}{8}.
-\frac{1}{8}x+\frac{7}{8}=-\frac{1}{3}y-0
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{8}x=-\frac{1}{3}y-0-\frac{7}{8}
Subtract \frac{7}{8} from both sides.
-\frac{1}{8}x=-\frac{1}{3}y-\frac{7}{8}
Reorder the terms.
-\frac{1}{8}x=-\frac{y}{3}-\frac{7}{8}
The equation is in standard form.
\frac{-\frac{1}{8}x}{-\frac{1}{8}}=\frac{-\frac{y}{3}-\frac{7}{8}}{-\frac{1}{8}}
Multiply both sides by -8.
x=\frac{-\frac{y}{3}-\frac{7}{8}}{-\frac{1}{8}}
Dividing by -\frac{1}{8} undoes the multiplication by -\frac{1}{8}.
x=\frac{8y}{3}+7
Divide -\frac{y}{3}-\frac{7}{8} by -\frac{1}{8} by multiplying -\frac{y}{3}-\frac{7}{8} by the reciprocal of -\frac{1}{8}.
\frac{y-0}{-3}=\frac{x-7}{-1-7}
Subtract 0 from -3 to get -3.
\frac{y-0}{-3}=\frac{x-7}{-8}
Subtract 7 from -1 to get -8.
\frac{y-0}{-3}=\frac{-x+7}{8}
Multiply both numerator and denominator by -1.
-\frac{1}{3}y-0=\frac{-x+7}{8}
Divide each term of y-0 by -3 to get -\frac{1}{3}y-0.
-\frac{1}{3}y-0=-\frac{1}{8}x+\frac{7}{8}
Divide each term of -x+7 by 8 to get -\frac{1}{8}x+\frac{7}{8}.
-\frac{1}{3}y=-\frac{1}{8}x+\frac{7}{8}+0
Add 0 to both sides.
-\frac{1}{3}y=-\frac{1}{8}x+\frac{7}{8}
Add \frac{7}{8} and 0 to get \frac{7}{8}.
-\frac{1}{3}y=\frac{7-x}{8}
The equation is in standard form.
\frac{-\frac{1}{3}y}{-\frac{1}{3}}=\frac{7-x}{-\frac{1}{3}\times 8}
Multiply both sides by -3.
y=\frac{7-x}{-\frac{1}{3}\times 8}
Dividing by -\frac{1}{3} undoes the multiplication by -\frac{1}{3}.
y=\frac{3x-21}{8}
Divide \frac{-x+7}{8} by -\frac{1}{3} by multiplying \frac{-x+7}{8} by the reciprocal of -\frac{1}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}