Solve for x
x=\frac{7y+45}{8}
Solve for y
y=\frac{8x-45}{7}
Graph
Share
Copied to clipboard
\frac{y+3}{-5-3}=\frac{x-3}{-4-3}
The opposite of -3 is 3.
\frac{y+3}{-8}=\frac{x-3}{-4-3}
Subtract 3 from -5 to get -8.
\frac{-y-3}{8}=\frac{x-3}{-4-3}
Multiply both numerator and denominator by -1.
\frac{-y-3}{8}=\frac{x-3}{-7}
Subtract 3 from -4 to get -7.
\frac{-y-3}{8}=\frac{-x+3}{7}
Multiply both numerator and denominator by -1.
-\frac{1}{8}y-\frac{3}{8}=\frac{-x+3}{7}
Divide each term of -y-3 by 8 to get -\frac{1}{8}y-\frac{3}{8}.
-\frac{1}{8}y-\frac{3}{8}=-\frac{1}{7}x+\frac{3}{7}
Divide each term of -x+3 by 7 to get -\frac{1}{7}x+\frac{3}{7}.
-\frac{1}{7}x+\frac{3}{7}=-\frac{1}{8}y-\frac{3}{8}
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{7}x=-\frac{1}{8}y-\frac{3}{8}-\frac{3}{7}
Subtract \frac{3}{7} from both sides.
-\frac{1}{7}x=-\frac{1}{8}y-\frac{45}{56}
Subtract \frac{3}{7} from -\frac{3}{8} to get -\frac{45}{56}.
-\frac{1}{7}x=-\frac{y}{8}-\frac{45}{56}
The equation is in standard form.
\frac{-\frac{1}{7}x}{-\frac{1}{7}}=\frac{-\frac{y}{8}-\frac{45}{56}}{-\frac{1}{7}}
Multiply both sides by -7.
x=\frac{-\frac{y}{8}-\frac{45}{56}}{-\frac{1}{7}}
Dividing by -\frac{1}{7} undoes the multiplication by -\frac{1}{7}.
x=\frac{7y+45}{8}
Divide -\frac{y}{8}-\frac{45}{56} by -\frac{1}{7} by multiplying -\frac{y}{8}-\frac{45}{56} by the reciprocal of -\frac{1}{7}.
\frac{y+3}{-5-3}=\frac{x-3}{-4-3}
The opposite of -3 is 3.
\frac{y+3}{-8}=\frac{x-3}{-4-3}
Subtract 3 from -5 to get -8.
\frac{-y-3}{8}=\frac{x-3}{-4-3}
Multiply both numerator and denominator by -1.
\frac{-y-3}{8}=\frac{x-3}{-7}
Subtract 3 from -4 to get -7.
\frac{-y-3}{8}=\frac{-x+3}{7}
Multiply both numerator and denominator by -1.
-\frac{1}{8}y-\frac{3}{8}=\frac{-x+3}{7}
Divide each term of -y-3 by 8 to get -\frac{1}{8}y-\frac{3}{8}.
-\frac{1}{8}y-\frac{3}{8}=-\frac{1}{7}x+\frac{3}{7}
Divide each term of -x+3 by 7 to get -\frac{1}{7}x+\frac{3}{7}.
-\frac{1}{8}y=-\frac{1}{7}x+\frac{3}{7}+\frac{3}{8}
Add \frac{3}{8} to both sides.
-\frac{1}{8}y=-\frac{1}{7}x+\frac{45}{56}
Add \frac{3}{7} and \frac{3}{8} to get \frac{45}{56}.
-\frac{1}{8}y=-\frac{x}{7}+\frac{45}{56}
The equation is in standard form.
\frac{-\frac{1}{8}y}{-\frac{1}{8}}=\frac{-\frac{x}{7}+\frac{45}{56}}{-\frac{1}{8}}
Multiply both sides by -8.
y=\frac{-\frac{x}{7}+\frac{45}{56}}{-\frac{1}{8}}
Dividing by -\frac{1}{8} undoes the multiplication by -\frac{1}{8}.
y=\frac{8x-45}{7}
Divide -\frac{x}{7}+\frac{45}{56} by -\frac{1}{8} by multiplying -\frac{x}{7}+\frac{45}{56} by the reciprocal of -\frac{1}{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}